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ABSTRACT

Current radiation therapy (RT) planning for limiting lung toxicity assumes

a uniform distribution of lung function with little consideration to the spatial and

temporal pattern of lung function. Establishment of relationships between radiation

dose and pulmonary function change can help predict and reduce the RT-induced

pulmonary toxicity. Baseline measurement uncertainty of pulmonary function across

scans needs to be assessed, and there is a great interest to compensate the pulmonary

function for respiratory effort variations.

Respiratory-gated 4DCT imaging and image registration can be used to esti-

mate the regional lung volume change by a transformation-based ventilation metric

which is computed directly from the deformation field, or an intensity-based metric

which is based on CT density change in the registered image pair. In this thesis,

we have evaluated the reproducibility of regional pulmonary function measures us-

ing two repeated 4D image acquisitions taken within a short time interval for both

transformation-based and intensity-based metrics. Furthermore, we have proposed

and compared normalization schemes that correct ventilation images for variations in

respiratory effort and assess the reproducibility improvement after effort correction.

The major contributions of this thesis include: 1) develop and validate a pro-

cess for establishing measurement reproducibility in 4DCT-based ventilation, 2) eval-

uate reproducibility of the transformation-based ventilation measurement, 3) evalu-

ate reproducibility of the intensity-based ventilation measurement, 4) develop and
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compare different ventilation normalization methods to correct for respiratory effort

variation across scans.
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ABSTRACT

Current radiation therapy (RT) planning for limiting lung toxicity assumes

a uniform distribution of lung function with little consideration to the spatial and

temporal pattern of lung function. Establishment of relationships between radiation

dose and pulmonary function change can help predict and reduce the RT-induced

pulmonary toxicity. Baseline measurement uncertainty of pulmonary function across

scans needs to be assessed, and there is a great interest to compensate the pulmonary

function for respiratory effort variations.

Respiratory-gated 4DCT imaging and image registration can be used to esti-

mate the regional lung volume change by a transformation-based ventilation metric

which is computed directly from the deformation field, or an intensity-based metric

which is based on CT density change in the registered image pair. In this thesis,

we have evaluated the reproducibility of regional pulmonary function measures us-

ing two repeated 4D image acquisitions taken within a short time interval for both

transformation-based and intensity-based metrics. Furthermore, we have proposed

and compared normalization schemes that correct ventilation images for variations in

respiratory effort and assess the reproducibility improvement after effort correction.

The major contributions of this thesis include: 1) develop and validate a pro-

cess for establishing measurement reproducibility in 4DCT-based ventilation, 2) eval-

uate reproducibility of the transformation-based ventilation measurement, 3) evalu-

ate reproducibility of the intensity-based ventilation measurement, 4) develop and
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compare different ventilation normalization methods to correct for respiratory effort

variation across scans.
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CHAPTER 1

INTRODUCTION

Lung cancer is the biggest cancer killer of the human for both men and

women [3], making up to about 29% of cancer caused deaths [4, 5]. Up to half

of lung cancer patients chose to receive radiation therapy (RT) after tumor diagno-

sis [3]. Studies have found higher radiation dose improves the overall survival after

RT [6, 7]. However, to irradiate and kill the lung tumors, normal lung tissue will also

be irradiated [5]. Patients after RT often develop some degree of lung injury, with an

associated decline in pulmonary function, tissue pneumonitis or tissue fibrosis. Pa-

tients may benefit from less lung toxicity and preserve more pulmonary function after

therapy if the regions that are high-ventilated during respiration or more sensitive to

radiation can be avoided or less irradiated in RT. The compromise between the two

purposes of minimizing RT-induced lung toxicity and preserving more lung function

creates a necessity to investigate the spatial and temporal pattern of lung function.

The current RT paradigm for limiting lung toxicity is based on the dose-volume

relationship of the treated lung. Two predictors currently utilized in RT planning are

the volume of lung receiving at least 20 Gy [8] and the mean radiation dose delivered

to normal lung tissue [9, 10]. Current radiation toxicity estimation is based on a

uniform lung function and little consideration has been given to spatial and temporal

pattern of lung function. Regions of normal lung tissue with high ventilation can

be avoided from radiation if we know the regional pulmonary function pattern. The
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cancer can also be better treated with more focused radiation dose. A more accurate

RT planning model should consider both the volume and the pulmonary function

capacity of the portions of irradiated lung. Since 4DCT has become a routine ex-

amination for lung cancer RT treatment planning, it would be convenient to utilize

4DCT combined with image registration to generate high resolution ventilation map,

which has been investigated by several groups [11, 12, 13, 14, 15]. The overall motiva-

tion of the study is to derive and model regional pulmonary function with 4DCT and

image registration for use in radiation therapy of lung cancer. Currently, the complex

inter-relationships between RT treatment schemes and pulmonary function change

before and after RT are poorly defined. Meanwhile, to measure the real pulmonary

function change caused by radiation, we need to establish the overall reproducibility

of the method that is used to measure the regional pulmonary function. It is also

worth investigating into the normalization schemes that correct ventilation images for

variations in respiratory effort and their affect on change of the reproducibility after

respiratory effort correction.

In this chapter we give a brief introduction to the general background of this

study, such as respiratory physiology, pulmonary function imaging, and image pro-

cessing, etc. Comprehensive literature reviews are presented in each section to show

findings in previous studies and significance of our research work.

1.1 Respiratory Physiology

Breathing is vital for human life. During breathing oxygen is inhaled into the

body and carbon dioxide is expelled from the body [16]. As a crucial component of
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respiratory system, lung is the site of gas exchange. The lung tissue consists of mixed

structures such as bronchioles, bronchi, blood vessels, interstitium, and alveoli [2].

During each respiratory cycle, the lung undergoes tissue expansion and contraction,

driven and facilitated by the ventilatory pump including the chest wall, diaphragm,

inspiratory and expiratory muscles, and related neural controls of breathing [17]. The

lung and chest wall have natural tendencies to recoil [18]. During lung expansion, if

the atmospheric pressure is considered to be zero as reference, the respiratory muscles

and diaphragm generate a negative enough intrapleural pressure within the thorax

to overcome the recoiling force and increase the lung volume. The lung expansion

creates a negative pressure within the lung alveoli relative to atmospheric pressure,

resulting in oxygen-rich air-flowing into the lung through conducting airways [2].

Within the lung, the air reaches the respiratory zone, composed of alveoli, through

the transitional zone, which consists many generations of airways and bronchioles [2].

The alveoli are the sites of gas exchange, where the oxygen in the alveoli exchanges

with carbon dioxide in the venous blood in the pulmonary capillaries surrounding each

alveolus, in the passive diffusion way [19]. The whole process is shown in Figure 1.1.

In the opposite direction, the exchanged air rich in carbon dioxide is expelled to the

environment during lung contraction, which mainly depends on the recoiling force.

The constant, synchronous functioning of the breathing system ensures reliable gas

delivery for whole body.

Many lung diseases affect pulmonary function by changing the tissue mate-

rial and mechanical properties. For example, pulmonary emphysema, a component
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Figure 1.1. Lung function process illustration, from [20].

of chronic obstructive pulmonary disease (COPD), results from tissue elasticity de-

cline (increased tissue compliance) with destruction of the structures supporting the

alveoli and destruction of the capillaries feeding the alveoli [21, 2]. In the other di-

rection, one interstitial lung disease called idiopathic pulmonary fibrosis (IPF) can

cause symptoms of lung inflammation and fibrosis by making lung tissue thicker and

stiffer (reduced tissue compliance). Lung breathing ability and breathing pattern can

also be impacted and influenced by lung cancers [22]. Lung tumors may result in

occlusion of the major airways causing breathlessness. 60% of lung cancer patients

have dyspnea with associated symptoms including chronic cough and sputum produc-

tion or hemoptysis [23, 24]. Radiation therapy can be curative, but may also bring

damage to the lung and cause significant decline in lung function accompanied with

many other symptoms [25]. Due to the sensitivity of the lung to radiation dose, un-

intended radiation-induced lung injury has been the major limit of therapeutic doses

to lung cancer [26]. Figure 1.2 illustrates stages of radiation-induced lung injury.

The radiation-induced lung injury in the intermediate acute phase and in the late

and chronic phases are respectively marked by radiation pneumonitis and radiation
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fibrosis, both of which may alter pulmonary function [27]. Since lung diseases and

treatment are all associated with changes in lung tissue mechanics, it would be very

helpful to develop a method to look into the regional mechanics which determine

regional pulmonary function.

Figure 1.2. Stages of radiation-induced lung injury, from [28].

1.2 The Pulmonary Function Test

Current clinical methods for evaluating global lung function include spirome-

try, plethysmography, and diffusing capacity of carbon monoxide (DLCO), etc. Despite

the fact that these tests are easy to administer and can help in the diagnosis and the

management of patients with pulmonary or cardiac diseases, they are highly effort

dependent, and cannot reflect regional pulmonary function. A very simple but useful
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test of lung function is FEV1 test, measured in a single forced expiration in one second

(Figure 1.3) [29]. The subject is asked to inhale maximally and then exhale as hard

and as completely as he or she can. The volume of air exhaled in the first second

is called FEV1 (forced expired volume in 1 second), and the total volume exhaled in

the forced expiration is the forced vital capacity (FVC) [29]. Normally, the FEV1

is about 80% of the FVC. In restrictive diseases such as pulmonary fibrosis, both

FEV1 and FVC reduce, but the FEV1/FVC% may be normal or even increased. In

obstructive diseases such as bronchial asthma, FEV1 reduces much more than FVC,

giving a low FEV1/FVC% [29].

Plethysmography is a lung test that is performed to see how much air the lung

can hold and to compute static lung volumes following Boyle’s Law. Lung volumes

and capacities are illustrated in Figure 1.4, including tidal volume (TV), volume in-

spired or expired within a normal breath; inspiratory reserve volume (IRV), maximum

volume that can be inspired over a normal tidal inspiration; expiratory reserve volume

(ERV), maximal volume that can be expired after a normal tidal expiration; resid-

ual volume (RV), volume that resides in the lung after a forced maximal expiration;

inspiratory capacity (IC), volume inhaled from tidal expiration to forced maximal

inspiration; functional residual capacity (FRC), volume that remains in lung after a

normal expiration; vital capacity (VC), volume difference between maximal inspira-

tion and maximal expiration; total lung capacity (TLC), volume of the lung after

forced maximal inspiration [2].

DLCO is a measurement of diffusion of gas passing from lung alveoli into the
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(a) (b)

Figure 1.3. Pulmonary function test. (a) A spirometer, from [30]. (b) Corresponding
sample airflow curve during the forced expiration.

Figure 1.4. Concepts of lung volumes and capacities, from [31].
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blood. The transfer of carbon monoxide is limited solely by diffusion, it is therefore

the gas of choice for measuring the diffusion properties of the lung [19]. DLCO means

the volume of carbon monoxide transferred in milliliters per minute per mm Hg of

alveolar partial pressure. DLCO can be calculated from the inspired and expired

concentration measurements of carbon monoxide in a dilute mixture. Similar to

other diffusion measurements, DLCO is related to the area and thickness of blood-gas

barrier, and the blood volume in pulmonary capillaries [19].

1.3 Regional Pulmonary Function Measurement

The pulmonary function in the lungs is not homogeneous. However, the clinical

pulmonary function test (PFT) cannot reveal regional differences. Various methods

have been developed for regional lung function analysis. Invasive methods, such as

percutaneously or surgically implanted parenchyma markers or inhaled fluorescent

microspheres, are effective but not suited for translation to humans [32, 33, 34, 2].

Noninvasive methods include medical imaging approaches. Positron emission tomog-

raphy (PET) and single photon emission computed tomography (SPECT) can pro-

vide a direct assessment of lung function [35, 36, 37, 38], but their application is

limited by low spatial resolution [2]. Hyperpolarized noble gas MR imaging (such as

129Xe and 3He) has also been developed for functional imaging of pulmonary ventila-

tion [39, 40, 41, 42, 43]. Hyperpolarized MRI can provide enough temporal resolution

to observe the dynamics of gas flow through the lung. However, the method is only

partially quantitative and depicts very little anatomic detail. Xenon-enhanced CT is

another imaging modality that can directly assess pulmonary ventilation by observing
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the wash-in and wash-out rates from series of CT images [44, 45, 46]. The need for

extremely high temporal resolution to measure the wash-in/wash-out time constants

limits the overall axial coverage to about 12 to 15 cm in the lung for the method of

Xenon-CT.

With the development of multi-detector-row computed tomography (MDCT)

and 3D non-rigid image registration, many groups have turned to pulmonary function

analysis in the perspective of lung tissue mechanics, which in turn determine regional

lung function. Guerrero et al. used an optical-flow registration to compute the ven-

tilation map from 4DCT [13, 47]. After identifying corresponding voxels across the

4DCT data set by the optical flow image registration, the local ventilation (repre-

sented by change in fraction of air per voxel) was calculated from local averaged CT

values. The calculated ventilation was summed and then compared to global lung vol-

ume change for validation. Christensen et al. applied image registration to cine-CT

sequences and estimated local lung tissue expansion and contraction rate by Jacobian

determinant [48]. Their study shows regional pulmonary measurements matched well

with spirometry test. In four of five individuals, over multiple breathing periods, the

mean log-Jacobian and the air flow rate correlated well for entire lung (r2 = 0.858).

Additionally, the mean log-Jacobian and the air flow rate near the diaphragm corre-

lated well in all five individuals (r2 = 0.943) [48]. Reinhardt et al. [11] compared the

registration-based estimation on regional lung function to Xenon-CT and the average

r2 reached 0.73. Fuld et al. [49] validated registration-based regional specific volume

change against Xenon-CT specific ventilation in four anesthetized and mechanically
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ventilated sheep. Yamamoto et al. [50] presented the correlation between intensity-

based ventilation and emphysema regions, indicating potential physiological use of

the intensity-based ventilation. Castillo et al. [14] used image registration to com-

pute both transformation-based and intensity-based measures of local lung function

and compared them to SPECT functional measures. Their results demonstrated the

mathematical equivalence of analytic and geometric Jacobian metrics for quantifying

volume change, and show both methods correlate well with global ventilation mea-

surements and the clinical SPECT [14]. Recently, Mathew et al. [51] observed good

spatial and significant quantitative agreement for ventilation maps on hyperpolarized

3He MRI and 4DCT imaging, despite rather large differences in image acquisition

breathing maneuvers. All of the above results support the use of 4DCT and image

registration to measure the regional pulmonary function.

1.4 4DCT Imaging

4D (3D + time) multi-detector CT imaging technology can provide a series

of 3D volumetric image data at different respiratory states [52]. Though modern

multi-detector scanners can acquire multiple slices at a time, due to spatial-temporal

limitations of CT scanners, currently the entire lung cannot be imaged thoroughly

in single respiratory cycle. Therefore, to obtain 4D time-resolved information during

periodic lung motion, raw projection data must be collected at each couch position

for a time interval equal to or longer than the duration of a full respiratory cycle [53].

Such continuous data acquisition per couch position can be achieved by scanning in

either axial cine mode at a given couch position or in helical mode with couch moving



www.manaraa.com

11

at a very low pitch.

In cine mode, the couch does not move during data acquisition for each couch

position. After data acquisition at one couch position is completed, x rays are turned

off and the couch advances to begin data acquisition again at next couch position until

full coverage of the scan length has been obtained [54]. In helical mode, the image

data are acquired in sequence with the continuous moving of couch [52]. During

imaging the couch moves at a low enough pitch that enough number of slices can

be collected for a full respiratory cycle [52]. If the CT tube rotation time is short

compared to the period of motion, CT data acquisition can be finished over several

tube rotations.

After data acquisition, 3D CT volumes at different respiratory states can be re-

constructed by resorting and assembling the acquired data, with retrospective gating

technology and according to simultaneously recorded internal or external respiratory

surrogate signals [55]. In helical mode, because of the multi-detector scanner, a slab

or image stack is formed from the 2D image slices acquired at each couch position,

covering only part of the lung at a certain respiratory phase. Then in the recon-

struction stage, the image stacks from all respiratory cycles associated with the same

specific respiratory phase are stacked up and combined to form a complete 3D CT

volume at that phase [52]. By viewing temporally the 3D images in all sequential

phases, the reconstruction of a 4DCT image is complete (see Figure 1.5).
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Figure 1.5. Illustration of 4DCT imaging. 4DCT image set includes series of 3D CT
volumes at each reconstructed respiratory phase. A number of 2D slabs (or stacks)
from multiple respiration cycles are reassembled to reconstruct the 3D CT volumes
for each phase, according to the external respiratory surrogate. Figure is from [56].

1.5 Image Registration

Lung mechanics and regional pulmonary function information can be extracted

from the motion of lung tissue from one breathing stage to another. Therefore first

we need to map each image voxel to the corresponding voxel in the associated image.

The problem can be solved by image registration whose task is to find the spatial

transform that maps each point in one image to corresponding position in another

image, as shown in Figure 1.6. Various image registration algorithms have been

developed. The basic components of parameterized registration framework is shown

in Figure 1.7 [57, 58].

1.5.1 Images

The registration framework usually requires two input images. One image is

defined as the moving or template image I1 and the other image as the fixed or target
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Figure 1.6. Image registration is an optimization problem that generates a spatial
transformation mapping each point in one image to its correspondence in another
image. Figure is from [57].

image I2 [2]. The whole registration process can be considered as an optimization

problem to find the best spatial mapping that aligns the moving image to the fixed

image. Usually, a multi-resolution strategy is employed to speed up the registration

and enhance the algorithm robustness. The multi-resolution strategy starts from reg-

istering the low resolution images of original input images [2, 59]. Then the acquired

transform at the low resolution level will be used as initial input transform of the

next higher resolution level. In this way, the transform is computed step by step from

coarse to fine until reaching the last level. The final transform is computed at the

finest level.

1.5.2 Transform

We use h(x) to indicate the transformation model which deforms each point in

one image to its corresponding point in another image. The vector x = (x1, x2, x3)
T

is the voxel coordinate in one image. In order of increasing allowed flexibility,

the transform models that can be used in image registration are translation, rigid,

similarity, affine, nonrigid B-spline and nonrigid thin-plate spline-like transforma-

tions [59]. Among the non-rigid transformation models, B-splines [60] is widely
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used in deformable registration of medical images like lung CT images. If we use

ϕi = [ϕx(xi), ϕy(xi), ϕz(xi)]
T to represent the coefficients of the i-th control point xi

on the spline grid G in each direction [61], then the transformation is represented as

h(x) = x+
∑
i∈G

ϕiβ
(3)(x− xi), (1.1)

Where ϕi describes the displacement information of controlling nodes on the image

grid and β(3)(x) is a three dimensional tensor product of cubic B-spline basis func-

tions [62]. β(3)(x) is defined as

β(3)(x) = β(3)(x)β(3)(y)β(3)(z), (1.2)

Where β(3)(x) is a separable convolution kernel. In the uniform cubic B-Spline

model [62] the basis function is defined as

β(3)(x) =

{
(4− 6x2 + 3|x|3)/6, 0 ≤ |x| < 1
(2− |x|)3/6, 1 ≤ |x| < 2
0, |x| ≥ 2

(1.3)

β(3)(y) and β(3)(z) would have similar forms as β(3)(x).

1.5.3 Cost Function

The cost function measures how well the moving image is matched with the

fixed image based on current transformation, and is passed into the optimizer for

computing parameters of the transformation for the next iteration. A simple cost

function metric commonly used is the sum of squared difference (SSD), which mea-

sures squared difference of CT Hounsfield units (HU) at paired corresponding points

between two images [2]. It is defined as

CSSD =

∫
Ω

{
[I2(x)− I1(h(x))]

2} dx. (1.4)
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Figure 1.7. The framework of registration includes basic components as two input
images (the fixed and the moving), a transform, a cost function, an interpolator and
an optimizer, from [57].

A more complicated cost function metric, the sum of squared tissue volume

difference (SSTVD) [63, 64, 65], has been specially designed to account for the inten-

sity change in lung CT images. This cost function metric minimizes local difference

of the lung tissue volume across different air pressure levels by improving the SSD

metric to consider the fraction of tissue volume instead of the total volume of tissue

and air [61]. Assume the HU of CT lung images is primarily formed by linear com-

bination of tissue and air [12], then the tissue volume in a voxel at position x can

be estimated as V(x) = v(x) HU(x)−HUair

HUtissue−HUair
where v(x) is the volume of voxel x [61]. If

we assume HUair = −1000 and HUtissue = 55 [61], the cost function metric SSTVD is

defined as

CSSTVD =

∫
Ω

[V2(x)− V1(h(x))]
2 dx

=

∫
Ω

[
v2(x)

I2(x) + 1000

1055
− v1(h(x))

I1(h(x)) + 1000

1055

]2
dx (1.5)

Other than intensity-based cost function metrics, feature-based information
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can also be included in the cost function to help guide the image registration pro-

cess. For example, the preservation of tubular shape and the tree structure of lung

blood vessel can be utilized to improve algorithm accuracy [66]. There are also other

proposed cost function metrics for different applications, such as mutual informa-

tion (MI), normalized correlation coefficient (NCC), normalized mutual information

(NMI), and kappa statistic (KS), etc [59].

1.5.4 Optimization

The solution of the optimization problem in image registration is to obtain the

optimal transformation parameters after the transformation in the previous iteration

moves in an optimized direction with a controlled step size. A limited-memory, quasi-

Newton minimization method with bounds (L-BFGS-B) [67] algorithm is commonly

used in B-spline based registration [61]. By constraining the search space of param-

eters, certain properties are preserved during the optimization process. Choi and

Lee [68] have proven the sufficient conditions to guarantee the local injectivity (one-

to-one mapping property) of functions parameterized by uniform cubic B-Splines.

The B-spline coefficients are constrained to ensure and maintain the transformation

topology of the two images during the optimization [2].

1.5.5 Interpolator

The intensity interpolation is needed for evaluation at non-voxel positions af-

ter intermediate transformations. Several methods can be used for interpolation with

difference in quality and speed [59]. The nearest neighbor is the most simple technique

and requires least computing resources, but it is low in quality. The returned value



www.manaraa.com

17

of linear interpolator is a weighted average of the surrounding (neighborhood) voxels.

B-spline interpolator with higher order requires more computation time [59]. Actu-

ally, the nearest neighbor and linear interpolation can also be considered as B-spline

interpolator as the special cases when N = 0 and N = 1 respectively. To generate

the deformed image at the final iteration of registration, higher-order interpolation

(N = 3) is usually used [59].

1.5.6 Algorithms

A number of registration algorithms have been developed for lung CT images

in the past few years. Modat et al. [69] developed the NiftyReg package. Ourselin

et al [70] proposed a block-matching technique in the global stage and a free-form

deformation (FFD) algorithm in the local stage. Staring et al. [71] proposed to

maximize the normalized correlation coefficient during registration. Hybrid feature-

constrained deformable registration was developed by Han et al. [72]. Diffeomorphic

transformation and cross correlation cost function were proposed by Song et al. [73].

Kabus et al. [74] combined the cost function of sum of squared differences and the

Navier-Lame operator as a regularization term in multi-resolution strategy. Yin et

al. [63] proposed mass preserving nonrigid registration of lung CT images using a cubic

B-spline transformation model. Guerrero et al. [75] proposed image registration using

3D optical flow method. The diffeomorphic morphons and diffeomorphic demons

registration methods using morphons were also proposed [76, 77]. Cao et al. [62]

presented a nonrigid registration algorithm combining a new vesselness similarity

and SSTVD for cost function to improve registration accuracy for lung CT images.
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Some research groups have started to investigate 4D image registration to preserve

the spatial-temporal smoothness of tissue motion [78, 79, 80, 81, 82].

After image registration, we should have obtained a voxel-by-voxel transfor-

mation. Based on the transformation matrix, many mechanical and mathematical

analysis can be performed for tracking the regions of interest of the lung at difference

conditions.

1.6 Lung ventilation and mechanics measures

After image registration, we acquire a displacement field that maps the corre-

sponding points in the fixed and moving image. The displacement field can be used to

assess regional lung ventilation (volume change) and regional tissue motion pattern

(stretch and strain, anisotropy, etc).
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Figure 1.8. Deformation of a continuum body from reference configuration (left) at
time t0 to current configuration at time t (right), from [1, 2].

Figure 1.8 shows a continuum body deforms from the reference configuration
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at time t0 to current configuration at time t, generating deformation or transforma-

tion φ [1, 2]. Suppose domain Ω ∈ R3 represents the set of points in the reference

configuration of a moving body at time t0, and x ∈ Ω is one material point. At time

t, Ω becomes deformed configuration Ωφ (=“φ(Ω)”), and y ∈ Ωφ is the material point

at time t. The transformation φ maps any point y in the deformed configuration Ωφ

to the corresponding point x in the reference configuration Ω at time t, i.e. y = φ

(x); ∀x ∈ Ω [2]. In Euclidean space, the displacement field is defined as:

u(x) = y− x = φ(x)− x. (1.6)

From the deformation computed by image registration, the deformation gra-

dient tensor can be calculated as the partial differentiations:

F =


∂φ1

∂x1

∂φ1

∂x2

∂φ1

∂x3
∂φ2

∂x1

∂φ2

∂x2

∂φ2

∂x3
∂φ3

∂x1

∂φ3

∂x2

∂φ3

∂x3

 . (1.7)

Then the deformation gradient tensors F can be used to estimate the transformation-

based lung ventilation, regional stretch and strain, and regional anisotropy.

1.6.1 Lung ventilation

Jacobian as an estimate of volume ratio:

As illustrated in Figure 1.8, if we consider the edges of an infinitesimal volume

in the reference configuration are parallel to the Cartesian axes [2], then we can define

the initial material volume as:

dv = dx1dx2dx3. (1.8)
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Based on the elemental vectors in the deformed configuration,

dy1 = Fdx1 =
∂φ1

∂x1

dx1

dy2 = Fdx2 =
∂φ2

∂x2

dx2

dy3 = Fdx3 =
∂φ3

∂x3

dx3,

(1.9)

we can calculate the corresponding material volume after deformation, dV , as:

dV = dy1 · (dy2 × dy3) =
∂φ1

∂x1

· (∂φ2

∂x2

× ∂φ3

∂x3

)dx1dx2dx3 = Jdv, (1.10)

where Jacobian J is the determinant of deformation gradient tensor F,

J(φ(x)) = det(F) =

∣∣∣∣∣∣∣
∂φ1

∂x1

∂φ1

∂x2

∂φ1

∂x3
∂φ2

∂x1

∂φ2

∂x2

∂φ2

∂x3
∂φ3

∂x1

∂φ3

∂x2

∂φ3

∂x3

∣∣∣∣∣∣∣ . (1.11)

Therefore, the Jacobian calculated from image registration gives an estimate of local

volume ratio dV
dv
.

Intensity-based ventilation:

In contrast to the transformation-based Jacobian, which is directly computed

from the deformation field from image registration, the lung ventilation can also be

calculated by involving the intensity information of the registered CT images and

the deformation field. Regional ventilation is defined as local air volume change

per unit time. One commonly used measure of regional ventilation is the specific

ventilation sV, which divides the air volume change by the initial air volume [12].

Specific ventilation sV was introduced when registration-based ventilation measure

was validated with the ventilation calculated from Xe-CT [11]. The inverse of the

time constant τ , which is calculated from the density changes in multiple Xe-CT

wash-in and wash-out phases, is equivalent to specific ventilation sV per unit time.
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We assume I1 and I2 are two CT images in registration, x = (x1, x2, x3)
T is

a voxel defined in I1 coordinate, and h(x) is the corresponding point in I2 image

computed by transformation h. Suppose region volumes are ν1 and ν2, and they are

composed of tissue volume (V1 and V2) and air volume (V ′
1 and V ′

2) [12], then,

sV =
V ′
1(h(x))− V ′

2(x)

V ′
2(x)

. (1.12)

With deformation field and CT intensities, there are three different approaches

for estimating the specific ventilation sV in Equation 1.12 [83].

• sV by specific volume change (SAJ), is based on the assumption that there is

no tissue volume, i.e. the region volume is pure air volume, making ν1 = V ′
1

and ν2 = V ′
2 . SAJ was used as an index of regional ventilation and compared

to Xe-CT estimates of regional ventilation (average r2 = 0.73) [11].

SAJ =
ν1(h(x))− ν2(x)

ν2(x)
= J(x)− 1. (1.13)

• sV by corrected Jacobian (SACJ), assumes both existence of tissue volume and

air volume. SAJ is a special case of SACJ when tissue volume is assumed to be

0.

SACJ = J(x)
I1(h(x))

I2(x)
− 1. (1.14)

• sV by intensity change (SAI, equivalent to SAC in Chapter 3), is derived from

SACJ with assumption that tissue volume is preserved during deformation, i.e.

regional volume change is only due to the air volume change [83]. This metric
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has been commonly used by Simon [12], Guerrero et al. [13], and Fuld et al. [49].

SAI = 1000
I1(h(x))− I2(x)

I2(x)(I1(h(x)) + 1000)
(1.15)

1.6.2 lung mechanics

In addition to regional volume change, deformation field can also be used

to estimate regional lung mechanics. Deformation of the lung is more than just

volume change. Volume change may be related to regional stretch and strain, and

may have oriental preference anisotropy in deformation. For example, the regions

near the diaphragm are more likely to deform in the superior-inferior direction than

other directions. Therefore, understanding lung mechanics properties can help better

characterize the lung tissue deformation.

Regional stretch and strain:

The deformation gradient tensor F in Equation 1.7 can be decomposed into

stretch and rotation components [2]:

F = RU, (1.16)

where the U is the right stretch tensor and R is an orthogonal rotation tensor.

The Cauchy-Green deformation tensor is defined as

C = FTF = UTRTRU = UTU. (1.17)

Principal analysis of C derives eigenvectors N1, N2 and N3 and their corre-

sponding eigenvalues λ2
1, λ

2
2 and λ2

3. We can get λ1, λ2 and λ3 (ordered as λ1 > λ2 >

λ3) of U after eigendecomposition [2].
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Strain measures how much a given displacement differs locally from a rigid

body displacement [1, 2]. Other than linear strain tensor, Lagrangian finite strain

tensor, also called the Green-Lagrangian strain tensor or Green-St. Venant strain ten-

sor, is used for large deformations with consideration of rotation in the deformation.

Green-Lagrangian strain tensor is defined as:

G =
1

2
(C− I) =

1

2
(FTF− I). (1.18)

Regional anisotropy:

In a deformation, a region may have no volume change but have changes in its

shape. Anisotropy measurement considers orientational preference of deformation.

Amelon et al. [84] proposed an anisotropic deformation index (ADI) and slab-rod

index (SRI) to describe the relationships among the stretches with relevance to lung

expansion. ADI measures the ratio of the length in the maximal extension direction

and the length in the minimal extension direction. SRI captures another nature of

anisotropy that whether the volume change is predominant along one or two direc-

tions. ADI and SRI are defined by

ADI =

√
(
λ1 − λ2

λ2

)
2

+ (
λ2 − λ3

λ3

)
2

, (1.19)

and

SRI =
tan−1(λ3(λ1−λ2)

λ2(λ2−λ3)
)

π/2
. (1.20)

1.7 Accuracy and reproducibility

Lung ventilation estimation using 4DCT and image registration has become a

new and exciting method. Before this method can be trusted for clinical applications,
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it needs to be carefully validated to be both accurate and reproducible. Accuracy

is the degree of closeness of measurements to the true value of the measured quan-

tity. Reproducibility, also called precision or repeatability, is the degree to which

repeated measurements show the same results under unchanged conditions [85]. As

analogized to shotting at a target in Figure 1.9, accuracy describes the closeness of

arrows to the target center, while reproducibility is the size of the arrow cluster, and

high reproducibility means one can expect repeated measurements under the same

conditions.

x

x

x

x

x

x

x

x

x

x

x

x

x

x

True

ventilation

More accurate, 

less reproducible

More reproducible, 

less accurate 

Figure 1.9. Analogy to explain the difference between accuracy and reproducibility
using target comparison.

With regard to the 4DCT- and registration-based ventilation measurement,

evaluation of accuracy has been performed by comparing it to ventilation measure-



www.manaraa.com

25

ments from other imaging modalities, such as Xenon CT [11], SPECT perfusion [14],

and hyperpolarized 3He MRI [51]. While high correlation was found when compared

to Xenon CT (r2 = 0.73) using linear regression analysis, the Dice similarity coef-

ficient used in the comparisons to SPECT perfusion and hyperpolarized MRI made

weak qualitative comparison by comparing cover overlays and greatly limited the

utility of the cross-modality accuracy validation.

Reproducibility needs to be established when 4DCT- and registration-based

ventilation measures are used to identify the radiation induced pulmonary function

changes across different 4DCT scans. Uncertainty in pulmonary function measure-

ment can be caused by many factors including subject’s irregular breathing patterns

and change of tidal volume in spontaneous respiration, imaging protocol, image reg-

istration, and choice of ventilation metric [86, 87, 88]. The effectiveness of pulmonary

function measures increases as the uncertainty in the measurement is reduced. If we

analyze a pair of 4DCT images obtained prior to RT using the same technology, they

should ideally yield identical pulmonary function maps. Variations in this measure

will have an impact when being used as either input information into the radiation

therapy treatment planning process, or for longitudinal study of pulmonary function

(e.g., following RT). Du et al. investigated the reproducibility of transformation-

based [87] (correlation coefficient 0.81±0.10) and intensity-based [88] (correlation co-

efficient 0.45±0.14) measures of lung tissue expansion in two repeat prior-RT 4DCT

acquisitions. Similarly, Yamamoto et al. [86] investigated the reproducibility of lung

ventilation over two different time frames and reported moderate voxel-based corre-
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lation between two ventilation images (Spearman rank correlation 0.50±0.15).

1.8 Assess Radiation-induced Pulmonary Change

Regional pulmonary function assessment using 4DCT and image registration

is an exciting method that has been developed recently. Since 4DCT has become

a routine examination for lung cancer RT treatment planning, this approach could

generate high resolution ventilation maps without adding extra radiation dose to the

patients. With image registration between CT images reconstructed at certain phases

of the breathing cycle, the generated deformation field can be used to compute re-

gional pulmonary function. Several groups have contributed to this approach from

the different aspects. Reinhardt et al. [11] directly calculated the determinant of the

deformation gradient tensor and used the Jacobian metric to analyze regional ventila-

tion. Simon [12] and Guerrero et al. [13] proposed a density-based ventilation calcula-

tion with the deformation field and its relationship with air fraction change. Castillo

et al. [14] demonstrated analytic and geometric Jacobian are mathematically equiv-

alent, and both Jacobian-based and density-based ventilation are highly correlated

with clinically acquired SPECT ventilation. Recently Yamamoto et al. [86] investi-

gated the reproducibility of 4DCT ventilation for two cohorts of subjects (imaging

interval of 15 days and 5 minutes) and found that it was only moderately reproducible.

They also reported that respiratory variation during 4DCT scans may deteriorate the

reproducibility. Several groups have investigated regional pulmonary function change

throughout RT using 4DCT and registration. Ding et al. [15] compared regional ven-

tilation before and after RT. Yaremko et al. [7] and Yamamoto et al. [89] identified
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high ventilated lung regions as avoidance structures in intensity modulated radiation

therapy (IMRT) planning. Zhong et al. [90] presented a 4DCT-based regional com-

pliance method for evaluation of radiation-induced lung damage. Vinogradskiy et

al. [91] used ventilation maps calculated from weekly 4DCT data to study ventilation

change throughout radiation therapy, but no consistent pattern of ventilation damage

was reported to correlate with the radiation dose.

1.9 Organization of the Thesis

The thesis is broken up into 5 chapters. While the current chapter introduces

the background and significance of this study with literature reviews, we organize the

rest of thesis as:

• Chapter 2 examines the reproducibility of transformation-based measures of

lung tissue expansion in two repeat 4DCT acquisitions within a short time in-

terval of mechanically ventilated sheep and free breathing humans. A framework

for evaluating reproducibility across scans is presented and the image registra-

tion is validated.

• Chapter 3 examines the reproducibility of intensity-based measures of lung tis-

sue expansion and contraction in sheep and human subjects. Intensity-based

Jacobian (IJAC) is introduced to make an intensity-based ventilation estimate

comparable with transformation-based ventilation estimate. Analytic models

are derived to study the impact of noise from CT images on intensity-based

ventilation maps. Additional gamma index is introduced to assess reproducibil-

ity. We also investigates improvement in IJAC reproducibility with increasing
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levels of denoising on the CT images in this chapter.

• Chapter 4 presents and compares normalization schemes that correct ventila-

tion images for variations in respiratory effort and assess the reproducibility

improvement after effort correction for 24 human subjects that need effort cor-

rection. The limits of global normalization are evaluated. Relationship between

the improvement of reproducibility and respiratory effort difference is investi-

gated.

• Chapter 5 summarizes the results in Chapter 2, 3, and 4, compares our results to

others’ work, discusses about potential applications of our results, and presents

some philosophical thoughts on this study.

• Chapter 6 summarizes the major contributions in this thesis.

• Chapter 7 proposes some studies that are worth being investigated to in the

future research.

• Chapter 8 concludes the thesis.
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CHAPTER 2

REPRODUCIBILITY OF TRANSFORMATION-BASED MEASURES
OF LUNG VENTILATION

This chapter is based on the following papers:

1. K. Du, J. E. Bayouth, K. Cao, G. E. Christensen, K. Ding, and J. M. Rein-

hardt: Reproducibility of Registration-Based Measures of Lung Tissue Expan-

sion. Medical Physics, 2012

2. K. Du, K. Ding, K. Cao, J. E. Bayouth, G. E. Christensen and J. M. Rein-

hardt: Registration-Based Measurement of Regional Expiration Volume Ratio

Using Dynamic 4DCT Imaging. IEEE International Symposium on Biomedical

Imaging (ISBI), 2011

2.1 Introduction

The primary function of the respiratory system is gas exchange. Gas exchange

depends on the complex mechanical inter-relationships between the lung tissue, di-

aphragm, chest wall, and ribs, the fluid dynamics behavior of the nose, mouth, and

airways, and the gas diffusion properties of the alveoli. Since many diseases and injury

conditions can affect these physical parameters, and thus, lung function, it is useful

to be able to reliably measure indices of lung function at the global and regional level.

Global lung function can be assessed using spirometry. Spirometric indices

such as forced expiratory volume in one second (FEV1) and forced vital capacity

(FVC) are common indices of global respiratory system function. Regional pulmonary
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function is more difficult to measure. Invasive methods, such as percutaneously or

surgically implanted parenchyma markers or inhaled fluorescent microspheres, are

effective but not suited for translation to humans [32, 33, 34]. Noninvasive methods

include medical imaging approaches. Positron emission tomography (PET) and single

photon emission computed tomography (SPECT) can provide a direct assessment of

lung function [35, 36, 37, 38], but their application is limited by low spatial resolution.

Hyperpolarized noble gas MR imaging (such as 129Xe and 3He) has been developed

for functional imaging of pulmonary ventilation [39, 40, 41, 42, 43]. Hyperpolarized

MRI can provide enough temporal resolution to observe the dynamics of gas flow

through the lung. However, the method is only partially quantitative and depicts

very little anatomic detail. Xenon-enhanced CT is another imaging modality that

can directly assess pulmonary ventilation by observing wash-in and wash-out rate of

serial CT images [44, 45, 46]. The need for very high temporal resolution to measure

the wash-in/wash-out time constants limits the overall axial coverage to about 12 to

15 cm for this modality.

Respiratory-gated CT imaging and 3D image registration can be used to lo-

cally estimate lung tissue expansion and contraction (regional lung volume change)

to obtain a ventilation map for the lung [11, 14]. Reinhardt et al. [11] compared

registration-based estimation of regional lung function using the Jacobian to xenon-

CT estimates of specific ventilation and reported average r2 ≈ 0.73. Castillo et al. [14]

used image registration to compute both transformation-based and intensity-based of

local lung function and compared these measures to SPECT functional measures.
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Their results demonstrate the equivalence of the analytic and geometric Jacobian for

quantifying volume change, and show both methods correlate well with global mea-

surements and clinical SPECT. Recently Yaremko et al. [7] proposed a method incor-

porating image registration with 4DCT images to identify regions of highly functional

lung for avoidance in intensity modulated radiation therapy (IMRT) planning in non-

small-cell lung cancer. Ding et al. [15] quantitatively measured the regional changes

in lung tissue function following a course of radiation therapy by using 4DCT and

image registration techniques. Keall et al. [89] also quantified the dosimetric impact

of 4DCT and registration-derived ventilation maps on functional treatment planning

to avoid highly-functioning lung regions during radiation therapy. Vinogradskiy et

al. [91] used ventilation maps calculated from weekly 4DCT data to study ventilation

change throughout radiation therapy.

Along with the increased interest in registration-based estimates of lung func-

tion come questions about reproducibility and robustness of the overall approach.

Nyeng et al. [92] imaged five patients repeatedly with thoracic 4DCT scans, one

scan with respiration restricted by an abdominal compression plate and the other

under free breathing, but the reproducibility of the ventilation measurement was not

investigated. Before registration-based techniques can be trusted to provide clinically-

meaningful measures of lung function or to track RT-induced changes in lung function

over time, it is necessary to establish the uncertainty associated with such measure-

ments.

A number of factors influence registration-based estimates of lung function.
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Assuming that two volumes are registered to obtain a Jacobian map of lung volume

change, these individual volumes may be acquired with the subject apneic or may be

selected from a 4DCT series. In the former case, the specific lung volumes at which

the inspiratory and expiratory scans are acquired will directly affect the magnitude

of the Jacobian values calculated from the image registration. In the latter case, the

tidal volume and reproducibility of the tidal breathing during acquisition may influ-

ence the Jacobian calculation and overall consistency as data from several breaths are

assembled into a single 4DCT volume. Choice of registration algorithm, associated

image pre-processing, and regularization strategy will impact the registration accu-

racy and smoothness of the deformation field [93, 89]. These factors will affect both

the fidelity and noisiness of the resulting Jacobian maps.

If we consider the reproducibility of registration-based measures of lung func-

tion, subject-related factors become important. Even with pre-scan training and

sophisticated pacing strategies, consistent and reproducible respiratory patterns may

be difficult to maintain, as the subject must control breathing rate, tidal volume, and

the interplay between thoracic vs. abdominal breathing. In the case of static image

acquisitions (e.g., near TLC (total lung capacity) and FRC (functional residual ca-

pacity)), the ability of the subject to reach the same volumes each time will directly

influence the registration-based Jacobians, and thus, the estimates of local lung func-

tion [15]. While the image processing and image registration factors also exist when

considering reproducibility across two or more studies, it seems likely that subject

variability is the major factor that determines overall measurement reproducibility.
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However, because it is difficult to separate the effects of subject variability, image

acquisition differences, algorithm factors, and other uncertainties, in this chapter we

look at the combined effect of all of these factors as a starting point to establish the

reproducibility of lung tissue expansion measurements in repeated 4DCT acquisitions

of the same subject.

Two different groups are studied in this chapter: (1) spontaneously-breathing

human subjects; and (2) anesthetized and mechanically ventilated sheep. In both

cases two sets of image data are gathered for each group by scanning twice using

4DCT with a short time interval in-between acquisitions. From each 4DCT data

set one volume near end expiration and one volume near end inspiration are re-

constructed. These volumes are registered using a B-spline deformable registration

technique (described in Section 2.2.3.2) and the Jacobian of the registration defor-

mation field is calculated. The Jacobians computed using the two separate 4DCT

acquisition are compared to assess reproducibility.

2.2 Material and methods

2.2.1 Method Overview

Figure 2.1 shows a block diagram of the entire process. Two 4DCT scans

(denoted as scan one and scan two) are acquired for each subject with a short time

interval between acquisitions. This so-called “coffee break” acquisition is intended to

capture two separate images of the lung depicting the same anatomy and physiological

condition. For each 4DCT scan, two volumes are selected and reconstructed: an image

near full inspiration (denoted as EI) and an image near end exhalation (denoted as
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EE). Three-dimensional B-spline deformable image registration is used to deform the

EI image to the EE image, producing a registration deformation field. The Jacobian

of this deformation field is computed and used to characterize the local lung tissue

volume change. This process is performed for both the scan one and scan two data,

producing registration transformations T1 and T2 and Jacobian images JACT1 and

JACT2.

Figure 2.1 and Table 2.1 describe the three registration transformations used in

this study. The coordinate system of scan one EE is used as the reference coordinate

system for all comparisons. Transformation T0 is used to convert the Jacobian maps

into a common coordinate system for comparison. The ratio map JACRATIO is the

voxel-by-voxel ratio of the scan one Jacobian and scan two Jacobian. JACRATIO is

computed in the scan one EE coordinate system. The ratio map JACRATIO is analyzed

to assess reproducibility.

2.2.2 Image Data Sets

2.2.2.1 Animal Subjects

Appropriate animal ethics approval was obtained for these protocols from the

University of Iowa Animal Care and Use Committee and the study adhered to NIH

guidelines for animal experimentation. Data from three adult male sheep (denoted

as S-1, S-2, and S-3), with weights 44.0, 37.8, and 40.4 kg, was collected. The

sheep were anesthetized using intravenous pentobarbital and pancuronium to ensure

adequate sedation and to prevent spontaneous breathing. Animals were positive

pressure ventilated during experiments using a custom built dual Harvard apparatus
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Figure 2.1. Block diagram shows the processing dataflow for the entire process. Scan
one EE and scan two EE are volumes at end expiration and scan one EI and scan two
EI are volumes at end inspiration. The Jacobians JACT1 and JACT2 are calculated
from the registration displacement fields. The ratio image JACRATIO, computed in
the scan one EE coordinate system, is used to assess Jacobian reproducibility.

Table 2.1. Summary of the image registrations performed to calculate lung function.

Transformation Image Transformation
Name Transformed Is Used To

T0 scan two EE → scan one EE Transform the scan two Jacobian
into the scan one EE coordinate
system for comparison, produc-
ing JACT2 ◦ T0

T1 scan one EI → scan one EE Calculate scan one lung expan-
sion map JACT1

T2 scan two EI → scan two EE Calculate scan two lung expan-
sion map JACT2

Refer to Figure 2.1 for names of the images and the transformations.
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piston ventilator designed for computer control. Respiratory rate for animals ranged

from 15 to 18 breaths per minute. Two 4DCT images were acquired for each animal

with a short (less than 10 minutes) time interval in between scans. The animals

were not moved between scans. Images were acquired in the prone position using the

dynamic imaging protocol with a pitch of 0.1, slice collimation of 0.6 mm, rotation

time of 0.5 sec, slice thickness of 0.75 mm, slice increment of 0.5 mm, 120 kV, and

400 mAs. The airway pressure signal was simultaneously recorded with the X-ray

projections and images were reconstructed retrospectively using the B30f kernel to

produce a full inspiration image (EI) and end exhalation image (EE).

2.2.2.2 Human Subjects

All data from human subjects was gathered under a protocol approved by

the University of Iowa Institutional Review Board. The human data consists of

4DCT data from nine human subjects about to undergo radiation therapy for lung

cancer. While twelve human subjects (denoted H-1 to H-12) enrolled in the study,

two subjects withdrew prior to data acquisition and one subject experienced heavy

coughing during the 4DCT scan making his images unusable. The remaining nine

subjects included five males and four females, with ages ranging from 31 to 78 years,

with an average age of 57±17 (mean ± standard deviation).

Prior to imaging, each subject was trained using a biofeedback system (RESP

@ RATE, Intercure Ltd., Lod Israel) to provide guidance for maintaining a constant

breathing rate. Musical cues were used to pace respiration during imaging, using

a technique developed at our institution which was previously shown to have high
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success [94].

Two 4DCT scans are acquired for each subject, with a short time between

scans. The subject left the scanner table between scans. Patients were scanned in

supine position using a 40-slice CT scanner (Siemens Biograph, Hoffman Estate, IL)

operating in helical mode. Imaging parameters were 120 kV, 2.0 mm slice thickness,

0.5 mm slice increment, 1.2 mm collimator, B30F medium smooth kernel reconstruc-

tion filter. Acquisition occurred with a pitch of 0.1 and either a tube rotation speed

of 500 ms per rotation (requiring each respiratory cycle to not exceed 5 seconds) or

1000 ms per rotation (for respiratory cycles to not exceed 10 seconds). The amplitude

of the respiratory motion was monitored using a strain gauge belt with a pressure

sensor (Anzai, Tokyo, Japan).

2.2.3 Data processing

2.2.3.1 Pre-processing

After image acquisition and reconstruction, all images were examined for evi-

dence of severe breathing artifacts or other acquisition problems. Such artifacts may

disrupt the image registration process and lead to poor registration results and erro-

neous lung expansion measurements. Although reconstruction artifacts are common

in 4DCT [95] and are a source of variability in our analysis, with the exception of

subject H-12, the images in this study were examined and found to contain minimal

spatial reconstruction artifacts [96]. The reconstruction artifacts may have been re-

duced by the audio-coaching for patient respiration and by the ability of helical mode

image acquisition to allow manual selection of projection data to be used for image
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reconstruction at each phase. Subject H-12 had moderate motion artifacts but it was

decided to not eliminate this case from analysis.

Prior to image registration, the images of the animal subjects were resampled

to size 288 × 288 × 352 with voxel size 1 mm × 1 mm × 1 mm. Images of the

human subjects were resampled to the same voxel size but with image size 304 × 304

× 320. The Pulmonary Workstation 2.0 software (VIDA Diagnostics, Inc., Iowa City,

IA) was used to identify the lung regions in the CT images. The lung segmentations

were manually inspected and modified if necessary. The binary mask obtained from

the segmented lung was used to limit the spatial domain of image registration and

subsequent lung function analysis. For each case, the lung volume was calculated by

counting the number of voxels in the lung region and multiplying by the voxel volume.

Tables 2.2 and 2.3 list the lung volumes measured for the subjects in this study.

2.2.3.2 Image Registration

For each subject, the EI image was registered to the EE image using tis-

sue volume preserving nonrigid registration algorithm previously developed by our

group [97]. The algorithm uses a cubic B-spline transformation model and multi-

resolution optimization procedure to minimize the sum of squared tissue volume dif-

ference (SSTVD) [63] subject to a Laplacian regularization constraint, as described

in equation (2.1).

CTOTAL = CSSTVD + ρCLAP, (2.1)

where CSSTVD is the SSTVD cost, CLAP is the Laplacian regularization constraint,

and ρ is a weighting parameter. The registration algorithm produces a dense voxel-
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Table 2.2. Summary of lung volumes for
scans 1 and 2 in EE and EI images for three
animal subjects.

Subject Scan EE EI Tidal Vol.
(L) (L) (L)

S-1 1 2.79 3.14 0.38
2 2.87 3.24 0.37

S-2 1 2.50 2.88 0.38
2 2.62 3.01 0.39

S-3 1 2.80 3.34 0.54
2 2.93 3.49 0.56

The “Tidal Vol.” column shows the vol-
ume difference from EE to EI. All volumes
are in liters.

Table 2.3. Summary of lung volumes for scans 1 and 2 in EE and EI images for
nine human subjects.

Subject Scan
EE EI Tidal Before Reg. TRE Inter-scan
(L) (L) Vol. Median Lmk. µ± σ Interval

(L) Dist. (mm) (mm)

H-1 1 1.24 1.72 0.48 9.30 0.85±0.41 54 minutes2 1.26 1.94 0.68 13.0 1.21±0.64

H-2 1 5.24 5.86 0.62 7.10 0.80±0.50 61 minutes2 5.34 5.91 0.57 5.80 1.20±0.80

H-4 1 2.90 3.39 0.49 10.9 1.32±1.40 20 hours2 2.83 3.41 0.58 12.9 1.68±1.65

H-7 1 5.26 5.72 0.46 3.70 0.72±0.38 33 minutes2 5.69 6.37 0.68 4.10 0.97±0.43

H-8 1 3.02 3.79 0.77 8.30 1.05±0.66 7 days2 3.12 4.35 1.23 8.70 1.41±0.97

H-9 1 3.65 4.50 0.85 7.50 1.29±0.82 35 minutes2 3.81 4.33 0.52 5.10 1.25±0.88

H-10 1 2.09 2.63 0.54 6.60 1.22±0.78 64 minutes2 2.14 2.61 0.47 6.60 1.73±1.24

H-11 1 3.51 4.09 0.58 4.60 1.30±1.05 33 minutes2 3.54 4.22 0.67 4.50 1.36±0.93

H-12 1 3.95 5.11 1.16 14.1 2.01±1.49 29 minutes2 3.91 5.14 1.23 13.5 1.66±0.87

The “Tidal Vol.” column shows the volume difference from EE to EI. All
volumes are in liters. The “Inter-scan Interval” column gives the approximate
time between the scan one and scan two acquisition. The “Before Reg. Median
Lmk. Dist.” column gives the median distance of landmark points in EE and EI
before registration, which gives an indication of the amount of motion within
the lung during inhalation. The “TRE” column gives the mean ± standard
deviation of the target registration error.
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by-voxel displacement field transforming the EI image to the EE image.

The SSTVD term in the cost function, first introduced by Yin et al. [63],

provides a lung-specific intensity similarity criterion that can compensate for the

expected change in CT intensity as air is inspired or expired during the respiratory

process. For a given lung voxel at location x, assumed to be composed of only air

and tissue, the tissue volume V(x) at voxel coordinate x can be estimated as

V (x) = v(x)
HU(x)− HUair

HUtissue − HUair

, (2.2)

where v(x) is the total volume of voxel x and HUair and HUtissue are the CT values

of air and tissue. Following [63], we use HUair = −1000 HU and HUtissue = 55 HU.

In this case, the SSTVD metric can be written as

CSSTVD =

∫
Ω

[V2(x)− V1(h(x))]
2 dx

=

∫
Ω

[
v2(x)

I2(x) + 1000

1055
− v1(h(x))

I1(h(x)) + 1000

1055

]2
dx

(2.3)

where I1 and I2 represent the CT image data from the EI and EE images being

registered, Ω denotes the union of the left and right lung regions, and h(x) =

(h1(x), h2(x), h3(x))
T represents the transformation being estimated.

The Laplacian regularization term enforces a smoothness constraint on the

registration displacement fields u(x) = h(x) − x where x = (x1, x2, x3)
T . The regu-

larization term is defined as in [98]:

CLAP =

∫
Ω

||∇2u(x)||2dx, . (2.4)

where ∇ =
[

∂
∂x1

, ∂
∂x2

, ∂
∂x3

]
and ∇2 = ∇ · ∇ =

[
∂2

∂x2
1
+ ∂2

∂x2
2
+ ∂2

∂x2
3

]
. By adjusting the

ρ parameter in equation (2.1), one can balance registration intensity matching per-
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formance against deformation field smoothness. In this study, ρ = 0.25 was found

to provide the best tradeoff between registration field smoothness and registration

accuracy.

2.2.3.3 Image Registration Accuracy

Anatomic landmarks were used to assess registration accuracy in the T1 and

T2 transformations (matching the EI image to the EE image in scans 1 and 2) and

the T0 transformation (matching EE scan two to EE in scan one). A semi-automatic

landmarking system was employed for landmark selection and establishing correspon-

dence between images [99]. Approximately 100 to 140 vascular bifurcation points were

manually identified within the lungs for each human data set. The landmarks were

approximately uniformly distributed within the left and right lung. Landmark corre-

spondence was established by visualizing both the EE and EI image simultaneously.

Each landmark pair that was manually annotated by the observer was added to a

thin-plate-spline to warp the image and predict the location for the next unmatched

landmark pair. The thin-plate spline processing greatly increased the efficiency of the

landmark annotation. To assess registration accuracy, the landmark positions pre-

dicted by the registration algorithm are compared to the actual landmark positions

defined by the human expert.

2.2.3.4 Jacobian and Reproducibility

Regional tissue expansion can be estimated from the determinant of the Ja-

cobian matrix (or simply, Jacobian) of the registration deformation field [11]. If we

assume that lung expansion (contraction) is due solely to the flow in (out) of air during
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respiration, the Jacobian can serve as a surrogate for regional lung function [100]. For

a vector-valued registration deformation field (h1(x), h2(x), h3(x)) at voxel location

x, the Jacobian J(h(x)) is given by:

J(h(x)) =

∣∣∣∣∣∣∣
∂h1(x)
∂x1

∂h2(x)
∂x1

∂h3(x)
∂x1

∂h1(x)
∂x2

∂h2(x)
∂x2

∂h3(x)
∂x2

∂h1(x)
∂x3

∂h2(x)
∂x3

∂h3(x)
∂x3

∣∣∣∣∣∣∣ . (2.5)

In a Lagrangian reference frame, if the Jacobian is greater than one, there is local

tissue expansion; if the Jacobian is less than one, there is local tissue contraction.

A Jacobian value equal to one indicates there is no expansion or contraction at that

location. Finite differences were used to numerically compute Jacobian. For visual-

ization, the Jacobian map is color-coded and overlaid onto the original CT data.

The Jacobian maps from scan one and scan two are compared to establish the

level of reproducibility. The ratio of the Jacobian maps from scan one, JACT1, and

scan two, JACT2, was computed voxel-by-voxel to produce a new map JACRATIO.

If the two acquisitions and subsequent image processing produced exactly the same

lung expansion estimates, JACRATIO would be equal to one everywhere. The mean

and standard deviation of JACRATIO was calculated for all subjects.

2.2.3.5 Respiratory Effort Compensation

Respiratory effort differences, which may occur even with training and respi-

ratory time cues during imaging, can cause scan-to-scan variation in tidal volume and

the associated pulmonary function measurements. One possible approach to account

for these variations is to apply a correction to the calculated Jacobian map. Since the

average Jacobian should reflect the global volume change in the lung, the Jacobian
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ratio for scans one and two should be approximately equal to the ratio of the EE and

EI volume ratios for the two scans. Thus, these volume ratios can be used as a global

linear normalization factor to adjust for lung volume differences between scans one

and two. We apply this normalization strategy for all human scans in this study.

2.3 Results

2.3.1 Registration Accuracy

Figure 2.2 shows the cumulative histograms of the landmark distances pre-

and post- registration for the T0, T1, and T2 transformations. The pre-registration

histograms show the landmark distances after rigid registration was applied to align

the data sets prior to the non-linear B-spline registration. The post-registration

histograms show the landmark distributions after the B-spline registration is applied.

Target registration error (TRE) values after registrations T1 and T2 are summarized

in Table 2.3.

2.3.2 Reproducibility in Animal

Figure 2.3 shows transverse and coronal views of the original CT image, the

Jacobian map calculated from scan one and from scan two, and the Jacobian ratio

image for animal S-1. As illustrated in Figure 2.1, the Jacobian image from scan

two (JACT2) is transformed through the T0 transformation to convert it into the

coordinate system of scan one, producing JACT2 ◦T0. The T0 transformation allows

the two Jacobian images to be directly compared, and allows us to compute the voxel-

by-voxel ratio image JACRATIO. The results for animals S-2 and S-3 are similar.

Figure 2.4 shows in the top row 2D kernel density estimates [101] for the
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Figure 2.3. Transverse (top) and coronal (bottom) views of (left to right) the original
CT, JACT1, JACT2 ◦T0, and JACRATIO for animal subject S-1. Note the color scales
for JACT1 and JACT2 ◦ T0 are 0.9 to 1.3, and for JACRATIO the scale is 0.9 to 1.1.

voxel-by-voxel comparison of the scan one and scan two Jacobian data for the three

animal subjects. These plots are displayed with a color overlay that shows the joint

cumulative distribution of the JACT1 and JACT2 data. Marginal histograms of the

JACT1 and JACT2 data are plotted along the top and right side of the figures. A linear

regression analysis was performed to find the best fit linear model to represent the

relationship between the scan one and scan two Jacobian data. Pearson’s correlation

coefficient was computed for the linear model, with an average correlation value of

0.88 in the three subjects. The bottom row of Figure 2.4 are modified Bland-Altman

plots for the three animals. A Bland-Altman plot is a difference plot for analyzing the

agreement between two different assays. The conventional Bland-Altman plot shows

the difference of two measurements versus the mean of two measurements. Since

the Jacobian represents the ratio of expansion or contraction in local lung volume,
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we modified the Bland-Altman plot to show the ratio of JACT1 and JACT2 ◦ T0

versus the geometric mean of JACT1 and JACT2 ◦ T0. The modified Bland-Altman

plot is overlaid with colors to show a 2D kernel density estimate. Histograms of the

JACRATIO data are plotted along the right side of the figures. The solid line is the

reference line where JACRATIO equals to one , representing perfect agreement in the

two measurements. The dashed line is the average of JACRATIO. The closeness of the

dashed line and solid line is one measure of the consistency of our measurement in

lung expansion in two scans.

2.3.3 Reproducibility in Human

Figures 2.5 and 2.6 show the transverse and coronal views of the original CT

image, the Jacobian map calculated from scan one and from scan two, and the Jaco-

bian ratio image for human subjects H-2 and H-8. As with the animal subjects, the

scan two Jacobian image has been transformed into the coordinate system of scan one

using the T0 transformation. Subjects H-2 and H-8 were selected to illustrate cases

with good and poor reproducibility when comparing the scan one to scan two results.

Figure 2.7 shows the 2D kernel density estimate for the voxel-by-voxel comparison

of the scan one and scan two and the modified Bland-Altman plot for subject H-2.

Figure 2.7(b) shows the mean voxel-by-voxel Jacobian ratio is approximately 0.9922,

which is very close to the ideal value of unity.

2.3.4 Respiratory Effort Compensation

Figure 2.8 shows the relationship between the mean Jacobian ratio and the

ratio of EI to EE volumes for scan two to the ratio of those volumes in scan one
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Figure 2.5. Transverse (top) and coronal (bottom) views of (left to right) the original
CT, JACT1, JACT2 ◦T0 and JACRATIO for human subject H-2. Note the color scales
for JACT1 and JACT2 ◦ T0 are 0.9 to 1.3, and for JACRATIO the scale is 0.8 to 1.2.

Figure 2.6. Transverse (top) and coronal (bottom) views of (left to right) the original
CT, JACT1, JACT2 ◦T0 and JACRATIO for human subject H-8. Note the color scales
for JACT1 and JACT2 ◦ T0 are 0.9 to 1.5, and for JACRATIO the scale is 0.9 to 1.3.
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Figure 2.7. Jacobian scatter plot and Bland-Altman plot for human subject H-2. (a)
Smoothed color density scatter plot and marginal histograms of JACT1 and JACT2◦T0
for H-2. Histograms and summary statistics for the JACT1 and JACT2 data are given
along the top and right side of each plot. Colorscale is same as in Figure 2.4. (b) Mod-
ified Bland-Altman plot for H-2. The horizontal axis shows

√
JACT1 ∗ JACT2 ◦ T0

and the vertical axis shows JACRATIO.

(the lung volumes are given in Tables 2.2 and 2.3). If the EI to EE ratio changes in

scan two from that in scan one, the change indicates an increased or decreased level

of effort. Consequently, the Jacobian ratio between scan two and scan one should

depict this effort difference as a corresponding increase or decrease in lung expansion.

The figure shows that the mean Jacobian ratio is strongly correlated with the EE and

EI volume ratios in scans one and two.

From Table 2.3, a global lung expansion factor can be computed by taking

the ratio of the end inspiration to end expiration volumes for each of scan one and

two. Then a normalization scale factor for the Jacobian of the second scan can be

determined by taking the ratio of the lung expansion factor for scan one to the lung
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expansion factor for scan two. Taking subject H-8 as an example, the global expansion

factors are 1.25 and 1.39 for scans one and two, producing a JACT2◦T0 multiplicative

normalization factor of 0.9. This approach for global linear normalization is applied

to all human subjects and results are summarized in Table 2.4.
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Figure 2.8. Figure shows the mean Jacobian ratio vs. the ratio of global lung volume
expansion ratio for scan one to scan two for three animal subjects and nine human
subjects. The animal subjects are marked with red diamonds and the human subjects
are marked with blue diamonds.

H-8 is an example of a subject that has significant breathing effort differences

between the two 4DCT scans. Figure 2.9 shows the Jacobian scatter plot and modified

Bland-Altman plot of patient H-8 before and after the Jacobian in scan two is scaled

by a constant global normalization factor. This global linear normalization brings the
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center of mass of the scatter plot closer to unity, indicating more reproducible mea-

surements. Figure 2.10 shows the results before and after normalization for subject

H-4. In this case the global linear normalization produces a mean JACRATIO that is

closer to one and a regression line slope that is closer to one, however the normal-

ization shifts the mode of the Jacobian ratio distribution (red region in density plot)

away from unity.

2.3.5 Jacobian Ratio Images

If the subject, image acquisition, and image analysis were perfectly repro-

ducible, the Jacobian values computed from scan one and scan two would match

exactly and the Jacobian ratio images would be equal to one everywhere. Figure 2.11

shows box plots of the Jacobian ratio values for the three animal subjects and nine hu-

man subjects before and after the global linear normalization. Table 2.4 summarizes

and compares the statistical parameters before and after normalization, including

the mean, standard deviation (Std), coefficient of variation (CV) of JACRATIO, the

correlation coefficient between JACT1 and JACT2 ◦ T0, and the slope of regression

line.

2.4 Discussion

The results in Figure 2.2 show that the B-spline registration is effective at

aligning the user-defined landmarks, with 90% of the landmark distances below 5

mm after registration for eight of the nine human cases. The remaining case, case

H-12, was especially difficult for the manual analyst in that it was difficult to precisely

locate landmarks and to determine the exact correspondences. Thus, it is likely that
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Figure 2.9. Jacobian scatter plot and modified Bland-Altman plot for human subject
H-8 before and after global normalization. (a) Scatter plot before global normaliza-
tion. (b) Scatter plot after global normalization. (c) Bland-Altman plot before global
normalization. (d) Bland-Altman plot after global normalization.
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Figure 2.10. Jacobian scatter plot and modified Bland-Altman plot for human subject
H-4 before and after global normalization. (a) Scatter plot before global normaliza-
tion. (b) Scatter plot after global normalization. (c) Bland-Altman plot before global
normalization. (d) Bland-Altman plot after global normalization.
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Figure 2.11. Box plots for Jacobian ratio images JACRATIO for three animal subjects
and nine human subjects, before and after global linear normalization on human
subjects. First and third quartile are shown as the lower and upper extreme, and the
whiskers indicate extending beyond the extremes by 1.5 times the range of lower to
upper extremes. The outliers are marked with red plus signs. Number of data points
has been downsampled by a factor of 1000 for visualization.
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Table 2.4. Means, standard deviations, and coefficient of variation (CV) of the Ja-
cobian ratio images, correlation coefficients and regression line slopes of Jacobian
images JACT1 and JACT2 for three animal subjects and nine human subjects.

Subject
JacRatio Norm. JacRatio

C.V.
Corr. Regression Slope

Before After
Mean Std. Mean Std. Coef. Norm. Norm.

S-1 0.996 0.0139 - - 0.0140 0.922 0.944 -
S-2 1.000 0.0226 - - 0.0226 0.843 0.789 -
S-3 1.000 0.0264 - - 0.0264 0.887 0.980 -

H-1 1.099 0.0565 0.990 0.0509 0.0514 0.937 1.289 1.161
H-2 0.992 0.0359 1.001 0.0362 0.0362 0.811 0.894 0.902
H-4 1.025 0.0681 0.993 0.0659 0.0664 0.860 1.143 1.106
H-7 1.009 0.0515 0.980 0.0500 0.0511 0.570 0.528 0.513
H-8 1.100 0.0757 0.993 0.0683 0.0688 0.894 1.430 1.291
H-9 0.951 0.0527 1.032 0.0572 0.0554 0.772 0.522 0.566
H-10 0.983 0.0635 1.009 0.0652 0.0646 0.820 0.774 0.795
H-11 1.020 0.0666 1.000 0.0653 0.0653 0.755 0.824 0.808
H-12 1.022 0.0747 1.006 0.0735 0.0731 0.850 0.769 0.757

Columns four, five, and nine show the normalized results for the human sub-
jects. After normalization, the mean and standard deviation of the Jacobian
ratio images are scaled accordingly, while the CV stays the same.

some of the residual landmark positioning error after registration for case H-12 (and

perhaps others) is due in part to motion artifacts and in part by human error during

landmarking. Based on the data in Figure 2.2 and Table 2.3, the mean landmark

positioning error is on the order of a few mm, which is similar in performance to

earlier work [11, 93, 97, 98]. It is interesting to note that given the landmark results

for case H-12 and the comparisons in Figure 2.2, H-12 is not the subject with the worst

reproducibility, i.e. for case H-12, the large residual landmark positioning error does

not lead to poor reproducibility in the Jacobian maps. This apparent contradiction

lends further support to the hypothesis that case H-12 has unreliable manually-defined

landmarks.

The pre-T1 graphs in Figure 2.2, the lung volumes in Tables 2.2 and 2.3,
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and the median landmark distances before registration in Table 2.3 give some insight

into the reproducibility of the subjects in terms of respiratory patterns and level of

inspiration. The pre-T1 graphs in Figure 2.2 show the amount of landmark motion

within the lung during inhalation, which varied greatly between human subjects.

Table 2.3 shows considerable variation in the differences of tidal volumes and median

landmark displacements for scans one and two, with no clear relationship between

these two measurements.

Figures 2.3 and 2.4 show good reproducibility of the calculated Jacobian maps

in the animal model. The Jacobian histograms are very similar in scan one and

scan two and the linear regression of the voxel-by-voxel comparison between JACT1

and JACT2 has a slope close to unity. The modified Bland-Altman plot shows that

the average Jacobian ratio is approximately equal to one for all three cases. This

is not surprising given that the animals were anesthetized and mechanically ven-

tilated during these studies, and were not moved between image acquisitions. As

shown in Table 2.2, the EE and EI lung volumes, and thus the tidal volumes, were

very reproducible in the animal experiments. From several different perspectives,

the reproducibility results in these animal studies probably represent the very best

reproducibility measurement that we can expect across repeat studies of this type in

humans.

Figures 2.5 and 2.6 show examples of data from human subjects with good

and poor reproducibility. Table 2.3 shows that subject H-2 is a case where the lung

volumes and tidal volumes were very consistent between scan one and scan two,



www.manaraa.com

57

while the data for case H-8 shows a considerable change in the EI volume, and thus a

change in the overall tidal volume. Interestingly, case H-8 was one in which scan two

was acquired one week after scan one, but prior to radiation therapy. It is possible

that there were physiological changes during the time between scans, or perhaps the

subject simply forgot some of the respiratory training and breathed differently during

the second acquisition. If the latter explanation is true, this may have important

implications for respiratory monitoring equipment and patient training procedures.

Also note the increase of Jacobian is not uniformly distributed within the lung, but

reveals highly organized regions of increased ventilation.

Figure 2.7, 2.10, and 2.9 shows the scan one vs. scan two comparison of the

Jacobian data for subjects H-2, H-4 and H-8. Comparing the JACT1 and JACT2

histograms and the linear regression line slopes, case H-2 has the best reproducibility.

From the Jacobian histograms of H-4, it is interesting to note that subject H-4 has

a bimodal Jacobian distribution. The statistical parameters in Table 2.4 might be

interpreted with the help of Table 2.3, which shows the EE, EI, and tidal volumes

for the scan one and scan two acquisitions. Some of the cases with linear regressions

slopes very different from unity, such as cases H-1, H-7, H-8, and H-9, are all cases

where there was a big (200 cc or more) change in tidal volume between scan one

and scan two. This increase (or decrease) in tidal volume would lead to an increased

(or decreased) amount of lung expansion, thus directly affecting the Jacobian values.

Therefore, in these cases the subjects’ breathing patterns were not reproducible, which

in turn caused the lung expansion maps to be not reproducible.
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Static breath-hold imaging in place of 4DCT would reduce imaging artifacts

induced by variability in breathing patterns, but has some important disadvantages.

The most significant disadvantage is the inability of a free-breathing subject to repro-

ducibly reach and hold full inspiration (TLC) in repeat studies, which will undermine

the reproducibility of any lung expansion measures derived from breath-hold acqui-

sition [102]. In addition, imaging data acquired with the subject apneic does not

elucidate the relationship between tumor position and respiratory phase during tidal

breathing, which is needed for gated treatment delivery.

The difficulty of precise breath control in clinical 4DCT creates a need for a

compensation or normalization scheme that can be used to account for breathing effort

variation in different studies. Since the mean Jacobian is strongly correlated with the

lung volume ratios (see Figure 2.8), an obvious and straightforward normalization

method is to apply a multiplicative factor to one of the two lung expansion maps.

The multiplicative factor can be computed from the EI and EE lung volumes ratios

in scans one and two. Since this approach scales the entire expansion map by single

constant, this normalization is a global linear normalization. Figure 2.11 shows that

the mean JACRATIO is closer to unity after such a normalization. Comparing the

scatter plot and modified Bland-Altman plot for H-8 before and after normalization

(Figure 2.9), the slope of the regression line is closer to one and the average JACRATIO

is closer to one, showing the effectiveness of the effort normalization. However, the

effectiveness of global linear normalization for subject H-4 is less clear. Though the

regression line and the average of JACRATIO are closer to one after normalization (see
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Figure 2.10), the mode of the JACRATIO distribution is biased away from the desired

value of one. From the data given in Table 2.4, six of nine subjects have regression line

slopes closer to one after global linear normalization. Note that after normalization

the mean and standard deviation of JACRATIO are also scaled by the normalization

factor, while the CV and correlation coefficient are unchanged.

Ideally, a lung volume normalization scheme should account for the fact that

the rates of lung expansion and contraction are not uniform apex to base and ven-

tral to dorsal. Because of this, it seems unlikely that a single global normalization

constant is the optimal approach to locally compensate for differences in inspiration

level between scans.

The boxplot data in Figure 2.11 summarizes the distribution of the JACRATIO

data for three animal subjects and nine human subjects. It is clear from the fig-

ure that there is less JACRATIO variation in the mechanically-ventilated animal sub-

jects than in the spontaneously-breathing human subjects. There are outliers in the

JACRATIO distribution in both the animal and human subjects; some of this might

be attributable to the fact that small registration errors in the T0 transformation

used to match the JACT1 and JACT2 data may incorrectly align a voxel experiencing

high expansion (say normal tissue) with a voxel of low or near zero expansion (such

as a blood vessel or airway wall). The resulting Jacobian ratio could be very high,

producing an outlier. By reversing the high expansion and low expansion voxels and

following a similar reasoning, very low ratio values could also be produced. One so-

lution to this might be to use different methods to compare the Jacobian maps, such
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as an approximate method that matches Jacobian values within a neighborhood of

voxels.

Several statistical parameters of the JACRATIO distributions are given in Ta-

ble 2.4 for all subjects. These parameters may be useful for estimating confidence

intervals and performing statistical tests to detect changes in lung expansion between

two scans, as might be expected during a longitudinal study tracking a disease process

or an intervention such as radiation therapy. By combining the information in Ta-

ble 2.4 with image analysis techniques that can identify clusters of voxels that exhibit

a similar changes in Jacobian value, it may be possible to use the Jacobian map to

quantitatively monitor lung function on a very regional level.

2.5 Summary

Local measures of lung function are difficult to obtain with sufficient spatial

and temporal resolution. Lung expansion, a surrogate for lung function, can be as-

sessed using two or more respiratory-gated CT image acquisitions. In this study

we have examined the reproducibility of such measures using two 4D image acquisi-

tions taken with a short time interval between acquisitions. The results show that

good reproducibility can be obtained in anesthetized, mechanically ventilated ani-

mals, but variations in respiratory effort and breathing patterns reduce reproducibility

in spontaneously-breathing humans. Global linear normalization can globally com-

pensate breathing effort differences, but homogeneous scaling does not account for

differences in regional lung expansion rates. Additional work is needed to develop ef-

fective compensation procedures or regional normalization schemes that can account
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for human variation during respiration.
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CHAPTER 3

REPRODUCIBILITY OF INTENSITY-BASED MEASURES OF LUNG
VENTILATION

This chapter is based on the following paper:

1. K. Du, J. E. Bayouth, K. Ding, G. E. Christensen, K. Cao, and J. M. Reinhardt:

Reproducibility of Intensity-based Measures of Lung Ventilation. Submitted to

Medical Physics (in first revision), 2013

3.1 Introduction

Lung function depends on tissue material properties and respiratory system

mechanics. Since many disease processes and injury conditions can alter lung func-

tion, it is useful to be able to reliably measure indices of lung function at the global

and regional level. Regional pulmonary ventilation is the term used to characterize

the volume of fresh air per unit time that enters or exits the lung at the acinar (gas

exchange) level. Regional pulmonary ventilation can reflect physiological and patho-

logical changes in the airways, parenchymal mechanics, respiratory muscles, body

posture effects, and inhaled gas properties. While some characteristics of global lung

function can be assessed using spirometry and pulmonary function testing, regional

pulmonary ventilation is more difficult to measure.

Noninvasive imaging approaches have been developed to assess regional pul-

monary ventilation, such as positron emission tomography (PET) [35, 36, 37], single

photon emission computed tomography (SPECT) [103, 104, 105], hyperpolarized no-
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ble gas MR imaging [39, 40, 41, 42, 43], and xenon-enhanced CT [44, 45, 46]. Recent

advances in multi-detector-row CT (MDCT), 4DCT respiratory gating methods, and

image registration algorithms now enable us to obtain a regional lung expansion map

for the lung, which in turn can be used as an index of regional lung ventilation [11, 14].

Before the registration-based assessments of regional tissue expansion can be

trusted to provide clinically-meaningful measures and be used to track pulmonary

function change, for example, during radiation therapy (RT) course [15], it is nec-

essary to understand the variabilities of the techniques and establish technique un-

certainty. Several factors can influence these measurements, such as subject motion,

respiratory rate, and breathing effort variations, image acquisition artifacts and noise,

the image registration algorithm, associated regularization and similarity criteria, and

image registration errors. In [87], Du et al. examined the reproducibility of lung ex-

pansion measures computed from the Jacobian of the registration displacement field

aligning a CT image of the lungs at end inspiration to an image acquired at end expi-

ration. Yamamoto et al. [86] investigated the reproducibility of lung ventilation using

a transformation-based volume change metric and 4DCT imaging over two different

time frames and reported moderate voxel-based correlation between two ventilation

images (Spearman rank correlation 0.50±0.15).

In this chapter, we evaluate the reproducibility of three different techniques

for computing regional pulmonary ventilation. All three techniques utilize the same

4DCT as the input data for computations, which have been acquired as repeat scans

for a cohort of spontaneously-breathing human subjects and anesthetized and me-
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chanically ventilated sheep. The first technique is based on computing the specific air

volume change (SAC), which is computed directly from the intensity value (Hounsfield

unit) of each voxel within the lung [14]. For the second technique we derive the rela-

tionship between the SAC and the local volume change of each voxel, again derived

from the CT voxel intensity, which we call the intensity-based Jacobian (IJAC). Fi-

nally, we derive the local volume change from transformation field required to register

the CT acquired at the end of inspiration with that at the end of expiration, which

we call the transformation-based Jacobian (TJAC) [87]. Since SAC and the Jacobian

represent different physical phenomena and have different units, they are difficult to

compare directly. Therefore, we introduce the IJAC, which measures the same lo-

cal volume change as the transformation-based Jacobian (TJAC). We propose using

reproducibility as the metric to assess which of these approaches provides the most

sensitive measure of ventilation change following medical intervention (e.g., radiation

therapy), and to quantify the amount of change that can be attributed to the inter-

vention and not from the inherent uncertainty produced by the technique. We also

analyze the effects of variation in respiratory effort and the impact of CT noise on

the different approaches for computing pulmonary ventilation.

As an extension of our previous work in [87], this chapter continues and ex-

pands the analysis on the reproducibility of registration-based estimates of lung ven-

tilation in the following aspects: 1) developing IJAC to make an intensity-based

ventilation estimate comparable with transformation-based ventilation estimate, and

clarifying the relationship between IJAC and SAC; 2) deriving analytic models to
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study the impact of noise from CT images on intensity-based ventilation maps; 3)

introducing an additional comparison metric, the gamma index; 4) comparing the

reproducibility of the intensity-based ventilation estimates with the transformation-

based ventilation estimates presented in [87]; 5) using the same normalization scheme

as in [87] on the intensity-based ventilation estimates and studying the reproducibil-

ity before and after normalization; and 6) investigating improvement in IJAC repro-

ducibility with increasing levels of denoising on the CT images.

3.2 Background

One approach to estimate regional ventilation is to apply the principles of

continuum mechanics on the displacement field produced by a deformable image

registration. The Jacobian determinant, or simply the Jacobian, is the determinant of

the deformation gradient tensor as shown in Equation 2.5 as presented in Chapter 2,

where h(x) represents registration deformation field [11]. In this chapter, we will refer

to the Jacobian calculated using Equation 2.5 as the transformation-based Jacobian

(TJAC). The Jacobian measures the local volume change in a region, and can include

contributions due to both tissue volume change and air volume change. Castillo et

al. [14] demonstrated the equivalence of the Jacobian computed using Equation 2.5

and a geometrical approach based on computing the volume change of a 3D polygonal

region [106]. Reinhardt et al. [11] compared registration-based estimates of regional

lung function using the Jacobian with xenon-CT estimates of specific ventilation and

reported average r2 of 0.73. Ding et al. [15] used the Jacobian to quantitatively

measure regional ventilation before and after a course of radiation therapy.
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An alternative to the Jacobian-based approach for computing a ventilation

map was described by Guerrero et al [13], who characterized regional ventilation

in subjects utilizing the relationship between local air fraction and measured CT

intensity values, following the approach suggested by Simon [12]. Assuming that a

lung region consists only of air and tissue, the air fraction F can be calculated directly

from the CT voxel values [107, 108]:

F = − HU

1000
, (3.1)

where HU represents the mean CT value in the region of interest. Now suppose

an image registration algorithm registers two images (called the fixed and moving

images) acquired at different lung volumes. The change in fractional air content, or

specific air volume change (SAC), within a region is then [12]:

SAC =
∆V

Vf

=
F2 − F1

F1(1− F2)
(3.2)

where ∆V is local volume change in the region, and Vf is the volume of air in the

region the fixed image. F1 is the fraction of air in the region in the fixed image, and

F2 is that fraction in the corresponding region in the moving image. If we assume

that local volume change is due only to the increase or decrease of air (flow in or

flow out), and assume the intensity of air is -1000 HU and tissue is 0 HU, the specific

air volume change (SAC) can be computed from the image intensity values and the

image registration transformation h(·):

SAC =
∆V

Vf

= 1000
Im(h(x))− If (x)

If (x)(Im(h(x)) + 1000)
, (3.3)
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where If (x) is the CT intensity (HU) at location x in the fixed CT image and Im(h(x))

is the CT intensity of corresponding voxel in the moving CT image [14]. In [14],

Equation 3.3 was applied to all lung voxels with a CT intensity between -999 and

-250 HU.

Castillo et al. [14] compared the TJAC (computed using Equation 2.5) and

intensity-based specific air ventilation (computed using Equation 3.3) with ventila-

tion from 99mTc-labeled aerosol SPECT/CT, and found higher correlation between

intensity-based ventilation and SPECT/CT based ventilation than correlation be-

tween transformation-based Jacobian and SPECT/CT based ventilation. Yaremko

et al. [7] proposed using the intensity-based ventilation map to identify regions of

highly functional lung for avoidance in intensity modulated radiation therapy (IMRT)

planning in non-small-cell lung cancer. Vinogradskiy et al. [91] used the intensity-

based specific air volume change (Equation 3.3 in this chapter) calculated from weekly

4DCT data to study ventilation change throughout radiation therapy as a function

of radiation dose. Recently Ding et al. [83] compared three registration-based ven-

tilation measures, specific air volume change calculated from the Jacobian (SAJ),

specific air volume change calculated by the corrected Jacobian (SACJ), and specific

air volume change by intensity change (SAI), where SAI can be derived from SACJ by

assuming that tissue volume is preserved during deformation. The SACJ was found

better correlated with Xe-CT than the other two measures.
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3.3 Material and methods

3.3.1 Method Overview

Figure 3.1 shows a block diagram of the entire process. Two 4DCT scans

(denoted as scan one and scan two) are acquired for each subject with a short time

interval between acquisitions. This so-called “coffee break” acquisition is intended

to capture two separate 4DCT image sets of the lung depicting the same anatomy

and physiological condition. For each 4DCT scan, two volumes are selected and

reconstructed: an image near full inspiration (denoted as EI) and an image near

end exhalation (denoted as EE). Three-dimensional B-spline deformable image reg-

istration is used to deform the EI image to the EE image, producing a registration

deformation field. Following the process in [14], the EE and EI images involved in

the registration are smoothed to reduce noise and then the intensity-based ventila-

tion is computed from the displacement field and the aligned CT image pair. An

additional spatial averaging of the resulting ventilation map is performed to generate

the final ventilation map. This process is performed for both the scan one and scan

two data, producing registration transformations T1 and T2 and final intensity-based

ventilation images SACT1 and SACT2 or JACT1 and JACT2.

Other than transformations T1 and T2 defined between the EI and EE respi-

ratory phase points on 4DCT, one additional transformation, T0, mapping scan two

EE to scan one EE, is used to convert the ventilation maps into a common coordi-

nate system for comparison. T0 transformation is computed using the same image

registration algorithm as that used for T1 and T2. The coordinate system of scan
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one EE is used as the reference coordinate system for all comparisons. Because the

intensity-based ventilation maps may have zero and missing values [14], the applica-

tion of a voxel-by-voxel ratio or difference is not appropriate for comparison. In this

chapter we use a gamma index metric to compare the two maps with tolerance for

differences in ventilation value and location.

3.3.2 Image Data Sets

3.3.2.1 Animal Subjects

Appropriate animal ethics approval was obtained for these protocols from

the University of Iowa Animal Care and Use Committee and the study adhered to

NIH guidelines for animal experimentation. Data from three adult male sheep, with

weights 44.0, 37.8, and 40.4 kg, was collected. The sheep were anesthetized using in-

travenous pentobarbital and pancuronium to ensure adequate sedation and to prevent

spontaneous breathing. Animals were positive pressure ventilated during experiments

using a custom built dual Harvard apparatus piston ventilator designed for computer

control. Respiratory rate for animals ranged from 15 to 18 breaths per minute. Two

4DCT images were acquired for each animal with a short (less than 10 minutes) time

interval in between scans. The animals were not moved between scans. Images were

acquired in the prone position using the dynamic imaging protocol with a pitch of

0.1, slice collimation of 0.6 mm, rotation time of 0.5 sec, slice thickness of 0.75 mm,

slice increment of 0.5 mm, 120 kV, and 400 mAs. The airway pressure signal was

simultaneously recorded with the X-ray projections and images were reconstructed

retrospectively using the B30f kernel to produce a full inspiration image (EI) and end
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Figure 3.1. Block diagram shows the processing dataflow for reproducibility of
intensity-based ventilation metrics. Two complete 4DCT scans are acquired with
a short time interval in between acquisitions. The intensity-based ventilation maps
for scan one and two are calculated from the original CT images EE, EI and the
corresponding registration displacement fields. The ventilation maps for scan two are
transformed to the space of scan one for reproducibility assessment.

Table 3.1. Summary of the image registrations performed to calculate
intensity-based ventilation.

Trans. Image Transformation
Name Transformed Is Used To

T0 scan two EE → scan one EE Transform the scan two ventilation
map into the scan one EE coordi-
nate, producing JACT2 ◦ T0

T1 scan one EI → scan one EE Get scan one ventilation JACT1

T2 scan two EI → scan two EE Get scan two ventilation JACT2

Refer to Figure 3.1 for names of the images and the transformations.



www.manaraa.com

71

exhalation image (EE). These are the same data sets previously analyzed in [87].

3.3.2.2 Human Subjects

All data from human subjects was gathered under a protocol approved by

the University of Iowa Institutional Review Board. The human data consists of

4DCT data from ten human subjects about to undergo radiation therapy for lung

cancer. While thirteen human subjects enrolled in the study, data were not analyzed

for three (two withdrew prior to data acquisition and one experienced substantial

coughing during the 4DCT scan making the images unusable). The subjects included

five males and five females, with ages ranging from 31 to 78 years, with an average

age of 59±17 (mean ± standard deviation) years. These subjects, with the exception

of H-15, are the nine subjects evaluated in [87].

Prior to imaging, each subject was trained using a biofeedback system (RESP

@ RATE, Intercure Ltd., Lod Israel) to identify and support maintaining their nomi-

nal breathing rate. Musical cues were used to pace respiration during imaging, using

a technique developed at our institution previously shown to have high success [94].

Two 4DCT scans were acquired for each subject, with a short time between

scans (see Table 2.3 in Chapter 2). The subjects left the scanner table between scans.

Images were acquired in the supine position using the dynamic imaging protocol with

a pitch of 0.1, slice collimation of 0.6 mm, rotation time of 0.5 sec, slice thickness of

2 mm, slice increment of 0.5 mm, 120 kV, and 700 mAs. The pressure signal was

simultaneously recorded with the X-ray projections and images were reconstructed

retrospectively with the B30f kernel to produce a full inspiration image (EI) and end
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exhalation image (EE).

3.3.3 Data processing

3.3.3.1 Pre-processing

After image acquisition and reconstruction, all images were examined for evi-

dence of severe breathing artifacts or other acquisition problems. Such artifacts may

disrupt the image registration process and lead to poor registration results and erro-

neous lung expansion measurements. For the ten human cases and three animal cases

considered here, no significant image artifacts or other problems were detected.

Prior to image registration, the images of the animal subjects were resampled

to size 288 × 288 × 352 with voxel size 1 mm × 1 mm × 1 mm. Images of the

human subjects were resampled to the same voxel size but with image size 304 ×

304 × 320. The Pulmonary Workstation 2.0 software (VIDA Diagnostics, Inc., Iowa

City, IA) was used to identify the lung regions in the CT images. Blood vessels and

the bronchial tree were included in the lung segmentation. The binary whole lung

mask obtained from the segmented lung was used to limit the spatial domain of the

image registration and subsequent transformation-based lung function analysis. For

the intensity-based ventilation analysis, only voxels in the range [-999, -250] were

used to calculate ventilation estimates, as in [14]. The lung volume was calculated

by counting the number of voxels in the lung region and multiplying by the voxel

volume.
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3.3.3.2 Deformable Image Registration

For each subject, the EI image was registered to the EE image using tis-

sue volume preserving nonrigid registration algorithm developed by our group [109,

97, 98, 87]. The algorithm uses a cubic B-spline transformation model and multi-

resolution optimization procedure to minimize the sum of squared tissue difference

(SSTVD) [63], subject to a Laplacian regularization constraint. Subvoxel accuracy

of the registration algorithm compared to manually identified landmarks has been

previously reported for transformations T0, T1, and T2, for the same set of sub-

jects in this chapter except subject H-15 [87]. All ventilation images in this study

were subsequently derived from this registration algorithm with the same registration

parameters.

3.3.3.3 Intensity-based Measures of Ventilation

With the CT image intensities and spatial correspondence between the regis-

tration pair EE and EI, SAC can be computed via Equation 3.3, measuring specific

air volume change. In addition, the Jacobian of the registration displacement field

(Equation 2.5) measures the local volume change in a region. Both SAC and the

Jacobian are widely used as ventilation estimates, but they represent different physi-

cal phenomena. SAC measures the fraction of air volume change, while the Jacobian

measures the relative regional volume change [83]. In addition, the two estimates

have different quantities, for example, a 5% change in SAC and a 5% change in the

Jacobian represent different quantities of physiological volume change. In this section

we will show that an intensity-based Jacobian, which measures the same local volume
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change as the transformation-based Jacobian, can be calculated from the intensity

change in registered CT image pair. The intensity-based Jacobian enables a direct

comparison between the intensity-based and transformation-based methods.

SAC is defined by Castillo et al. [14] as

SAC =
f2 − f1

f1(1− f2)
, (3.4)

where f1 and f2 are the air fractions in a region in two different inflation conditions.

We can write

f1 =
Vair,1

V1

f2 =
Vair,2

V2

,

where Vair,1 and Vair,2 are the air volumes in conditions 1 and 2 and V1 and V2 are the

volumes of the region in conditions 1 and 2.

From Hoffman’s work [110], we also know that if we assume the lung is com-

posed of only air and tissue, then

f1 = −HU1

1000
f2 = −HU2

1000
, (3.5)

where HU1 and HU2 are the mean CT values in the region in conditions 1 and 2.

Note that

SAC + 1 =

f2
1−f2
f1

1−f1

=

Vair,2

Vtissue,2

Vair,1

Vtissue,1

.

If we assume that there is no tissue volume change between conditions 1 and 2, then

Vtissue,1 = Vtissue,2. In that case, we can write

SAC + 1 =
Vair,2

Vair,1

.
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If we define the volume ratio, VR, as

VR =
V2

V1

,

it is straightforward to show that

SAC + 1 =
f2
f1

VR,

or

VR =
f1
f2
(SAC + 1). (3.6)

From Equation 3.4 we have

f2 =
f1(SAC + 1)

1 + f1SAC
,

which, if substituted into Equation 3.6 and combined with
Vair,1

V1
= −HU1

1000
, produces

VR = −HU1

1000
SAC + 1, (3.7)

where HU1 is the CT intensity at a voxel of interest in the fixed image. Compared to

(3.6), the form in (3.7) is easier to compute.

Substituting (3.4) into (3.6) yields

VR =
1− f2
1− f1

, (3.8)

which can be written using (3.5) as

IJAC = VR =
1000 + HU1

1000 + HU2

. (3.9)

Thus, VR, which measures the same the volume ratio as the transformation-based

Jacobian, can be calculated directly from the Hounsfield unit change within the region.



www.manaraa.com

76

We will refer to the volume ratio calculated using Equation 3.9 as the intensity-

based Jacobian (IJAC). An alternate derivation of equations 3.6 and 3.9 based on the

definitions of SAC and IJAC is given in appendix C.1.

An advantage of using IJAC (Equation 3.9) rather than SAC is that a direct

comparison between IJAC and TJAC (Equation 2.5) is possible. Thus, with Equa-

tion 3.9 we can directly compare IJAC vs. TJAC reproducibility and compare to

previous work using the transformation-based Jacobian (such as [11] and [87]). Com-

parisons to SAC-based work (such as [14, 13, 47]) are also possible using Equation

3.6 or 3.7.

For the intensity-based ventilation analysis in each scan, lung voxels from

the CT images of scan one EE and scan two EE were delineated by an intensity-

based segmentation algorithm, with HU values in the range [-999,-250] representing

pulmonary parenchyma [14, 13, 47]. The spatial transformation established from the

image registration linked the fixed image (EE) and moving image (EI). The warping

function h(x) interpolates the moving image and maps the set of moving voxels to

the corresponding location in the fixed image. The resulting intensity-based Jacobian

maps in the coordinate system of EE, representing fractional change in air content

during lung expansion.

Following the approaches from [14, 13, 47], each CT input image was smoothed

by local averaging with kernel size 3 × 3 × 3, to suppress noise in the original

CT images and reduce the effects of image registration error, we then performed an

additional 9 × 9 × 9 local averaging on the preliminary IJAC results to generate
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the final ventilation maps. In contrast to TJAC, which is directly computed from

the displacement field from image registration, the calculation of IJAC also involves

the intensity information of the registered CT images at EE and EI. Consequently,

the increased noise in the intensity-based ventilation maps and poorer reproducibility

may come from two sources: noise in original CT images and image registration error.

To test how different levels of filtering affect reproducibility, we processed the data

for all human subjects with different amounts of low-passing filtering applied to the

CT images prior to registration. We tested the change of IJAC reproducibility for CT

images without smoothing and with different scales of smoothing using local average

kernels 3 × 3 × 3, 7 × 7 × 7, 11 × 11 × 11, and 15 × 15 × 15 voxels. Results for

effects of filtering on reproducibility are presented in Section 3.4.3.

Because of the use of the thresholds [-999,-250], not every voxel in the lung

region is assigned a ventilation value. Therefore, when we warp JACT2 back to the

coordinate of scan one EE, nearest neighborhood interpolation was used to warp

voxels outside of the threshold range, instead of the usual linear interpolation.

3.3.3.4 Analytical Analysis of Noise

As shown in Equations 3.3 and 3.9, the intensity-based SAC and intensity-

based Jacobian are computed from the CT values of the EE and EI images and the

registration transformation. Therefore the calculated ventilation measures are vul-

nerable to CT image noise and registration errors. In [14], noise filtering was used to

reduce these effects. The error in the intensity-based SAC and intensity-based Jaco-

bian ventilation measurements caused by the perturbation in CT HU measurement
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can be computed analytically from Equation 3.3 using the propagation of error the-

ory [111]. Details of the derivation of the coefficient of variation for the intensity-based

SAC and the Jacobian are described in Appendices D.1 and D.2.

Equation 3.10 shows the impact of CT noise standard deviation σCT on the

coefficient of variation (CV) of SAC measurements,

σSAC

µSAC

= σCT

√
If

2(If + 1000)2 + Im
2(Im + 1000)2

If (Im − If )(Im + 1000)
, (3.10)

where µSAC is the mean of SAC, and If and Im are the CT intensity values at a voxel

of interest in the EE and EI image.

Similarly, from Equation 3.9, we can perform a similar noise analysis for the

intensity-based Jacobian, which yields:

σIJAC

µIJAC

= σCT

√
(Im + 1000)2 + (Im − If )

2

(If + 1000)(Im + 1000)
, (3.11)

where µIJAC is the mean of IJAC.

The curves in Figure 3.2 plot the error propagation from CT noise to CV of

intensity-based ventilation measurements for several fixed EI HU values. The vertical

axis is σx

µxσCT
where x represents either SAC or intensity-based Jacobian. For example,

for an EE-EI pair with EE = −600 HU and EI = −975 HU, Figure 3.2 shows σSAC

µSAC
=

0.043 σCT and σJAC

µJAC
= 0.038 σCT. If we assume σCT = 10 HU [112], this produces a

coefficient of variation in the SAC of 43% and a coefficient of variation in the IJAC

of 38%, indicating the intensity-based ventilation measurements are noisy. Even with

local averaging to reduce noise in the CT images, the impact of CT noise on the final

intensity-based ventilation may be large and should not be neglected. Additionally,



www.manaraa.com

79

−1000 −800 −600 −400 −200
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

EE HU

C
V

 e
rr

or
 p

ro
pa

ga
tio

n 
fa

ct
or

 o
f S

A
C

 

 

EI=−975 HU
EI=−950 HU
EI=−900 HU
EI=−850 HU
EI=−800 HU

−1000 −800 −600 −400 −200
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

EE HU

C
V

 e
rr

or
 p

ro
pa

ga
tio

n 
fa

ct
or

 o
f J

 

 

EI=−975 HU
EI=−950 HU
EI=−900 HU
EI=−850 HU
EI=−800 HU

(a) (b)

Figure 3.2. Error propagation to coefficient of variation for intensity-based SAC and
IJAC. Vertical axis shows σx

µxσCT
, where x represents either SAC or intensity-based

Jacobian. EE represents the mean CT value in a region of interest at end expiration,
while EI represents the mean CT value in that same region at end inspiration. (a)
SAC. (b) IJAC.

any registration error will further increase variability of ventilation estimates.

3.3.3.5 Reproducibility Analysis

After calculating the intensity-based ventilation maps from two separate 4DCT

data sets, a metric is needed to compare these two ventilation maps regionally and

quantitatively. In our previous work [87], we introduced the Jacobian ratio map, the

colored 2D kernel density scatter plot, and the modified Bland-Altman plot to show

the voxel-by-voxel relationship of ventilation in two scans, and calculated statistical

parameters such as the mean and standard deviation of Jacobian ratio map, the

correlation coefficient between two Jacobian maps, and the slope of linear regression

line. However, in this chapter since the SAC map calculated from Equation 3.3 and

IJAC map calculated from Equation 3.9 may not be defined at all lung voxels, we

propose to use a modified gamma index to allow for approximate matching.
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The gamma index was developed in quantitative dose evaluation for RT dose

delivery [113]. In addition to considering the ventilation difference, the gamma index

adds a term to tolerate possible spacial misalignment, which may result from subject

motion, image acquisition problems, and image registration errors. The gamma index

is defined as:

γ(−→r2 ,−→r1 ) =min−→r2
{Γ(−→r2 ,−→r1 )}

=min−→r2
{

√
(
−→r2 −−→r1
∆d0

)2 + (
S2(

−→r2 )− S1(
−→r1 )

∆S0

)2}
(3.12)

where −→r1 and −→r2 are the voxel positions of JACT1 and JACT2 ◦T0 points respectively.

S1(
−→r1 ) and S2(

−→r2 ) are IJAC values in two scans. ∆d0 is the criteria for spatial offset

tolerance and ∆S0 is the IJAC difference criteria. For any given location in JACT1

there are as many Γ as there are evaluated points in the search space in JACT2 ◦T0.

The minimum value of Γ is the final γ value.

Since breathing effort, and thus ventilation, may vary subject to subject, we

have modified Equation 3.12 so that ventilation values are compared on a percentage

difference basis, depending upon a tolerance ∆p0,

γ(−→r2 ,−→r1 ) = min−→r2
{

√
(
−→r2 −−→r1
∆d0

)2 + (
S2(

−→r2 )− S1(
−→r1 )

S1(
−→r1 )×∆p0

)2} (3.13)

In this chapter we use ∆d0 = 4 mm and ∆p0 = 0.1 (i.e., 10 percent tolerance) as

default parameters. The gamma index tries to balance between differences in specific

ventilation and the distance between matching voxels. The pass threshold of the γ

test is γ = 1. A voxel with γ ≤ 1 passes the test, implying that there is a matching

voxel in the other ventilation map with less than 10% ventilation difference within a
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distance of 4 mm. The pass region percent rate is computed by counting all passed

voxels divided by total number of pulmonary parenchyma voxels.

3.3.3.6 Respiratory Effort Compensation

As described in [87], even with training and audio guidance, for some subjects

the level of breathing effort varied between the two pairs of scans gathered to assess

reproducibility. In [87] the authors used differences in lung volume to normalize for

breathing effort differences. As shown in Table 2.3, some subjects had a significantly

higher or lower breathing efforts in scan two than scan one. In this case, the gamma

metric above would probably draw a low pass percentage because it becomes harder

to find a similar ventilation value in the certain search space. The normalized gamma

is introduced to normalize the JACT2◦T0 to the scale of JACT1. As described in [87],

since the average Jacobian should reflect the global volume change in the lung, the

EE and EI lung volumes can be used as a global linear normalization factor to adjust

for lung volume differences between scans one and two.

By definition, the Jacobian is the ratio of EI volume and EE volume in a

specified region. Therefore for corresponding locations in scan one and scan two, we

have the relation:

JAC1

JAC2

∼
( EI volume
EE volume

)scan1

( EI volume
EE volume

)scan2
(3.14)

where JAC1 and JAC2 are Jacobian values at corresponding locations in JACT1 and

JACT2 ◦ T0.
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Then, the normalized gamma can be computed by Equation 3.16 as:

γ̂(−→r2 ,−→r1 ) = min−→r2
{

√
(
−→r2 −−→r1
∆d0

)2 + (
Ŝ2(

−→r2 )− S1(
−→r1 )

S1(
−→r1 )×∆p0

)2} (3.15)

where

Ŝ2 = S2 ×
( EI volume
EE volume

)scan1

( EI volume
EE volume

)scan2
. (3.16)

3.4 Results

3.4.1 Reproducibility in Animal

The animal subjects used in this chapter are the same as in Chapter 2. Refer

to Table 2.2 in Chapter 2 for a listing the lung volumes and the tidal volumes in two

scans measured for the three animal subjects in this study.

Figure 3.3 shows IJAC and TJAC color maps of the scan one ventilation es-

timate, the scan two ventilation estimate, the ratio map, and the gamma map for

animal S-1. Non-pulmonary voxels outside the range [-999, -250] HU were not pro-

cessed. As illustrated in Figure 3.1, the ventilation map from scan two is transformed

through the T0 transformation to be converted into the coordinate system of scan

one. The T0 transformation allows the two ventilation images to be directly com-

pared in the same coordinate framework, and allows us to compute the voxel-by-voxel

gamma comparison.

Figure 3.4 (a) shows 2D kernel density estimates for the voxel-by-voxel scatter

plot of the scan one and scan two IJAC data for one animal subject. The scatter plot is

displayed with a color overlay that shows the density of joint cumulative distribution

of the JACT1 and JACT2 data. Marginal histograms of the JACT1 and JACT2 data are

plotted along the top and right side of the figures. Pearson’s correlation coefficient
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Figure 3.3. IJAC (top) and TJAC (bottom) color maps of (left to right) scan one
Jacobian, scan two Jacobian, Jacobian ratio, and gamma map for animal subject S-1.

was computed. Averaged across all animal subjects, the correlation coefficient is

0.367. Figure 3.4 (b) is the Bland-Altman plot which shows the ratio of the two

measurements versus the geometrical mean of two measurements. The solid line

is the reference line that equals to one, representing perfect agreement in the two

measurements. The dashed line is the average ratio in IJAC measurements. The

scatter plot and Bland-Altman plot of TJAC for the same subject S-1 are shown in

Figure 3.4 (c) and (d), adapted from [87]. The axis of the scatter plots for IJAC and

TJAC was set with the same scale for easier comparison. The statistical parameters

for animal subjects are summarized in Table 3.2.
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Figure 3.4. Reproducibility results for animal S-1. (a) IJAC density scatter plot
and marginal histograms. (b) IJAC modified Bland-Altman plot. (c) TJAC density
scatter plot and marginal histograms. (d) TJAC modified Bland-Altman plot.
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3.4.2 Reproducibility in Human

Similar to the animal subjects, the human subjects used in this chapter are

the same as in Chapter 2. Refer to Table 2.3 in Chapter 2 for a listing of the lung

volumes, tidal volumes in two scans measured for the ten human subjects in this study.

Breathing effort variation is more apparent in the free-breathing humans compared

to mechanically ventilated animals. The time intervals between two scans are also

listed. Note that subject H-8 received the second scan 7 days after the first scan,

which is substantially longer than the time difference for the other subjects.

Figures 3.5 and 3.6 show the coronal view of IJAC and TJAC for scan one

ventilation, scan two ventilation, the ratio map and the gamma comparison map for

human subjects H-2 and H-8. As with the animal subjects, the scan two ventilation

image has been transformed into the coordinate system of scan one using the T0

transformation. Subjects H-2 and H-8 were selected to illustrate cases with good and

poor reproducibility when comparing the scan one to scan two results, as in [87].

Similar to Figure 3.4, Figure 3.7 and 3.8 shows the 2D kernel density estimates

for the voxel-by-voxel scatter plot and Bland-Altman plot of the scan one and scan two

for the two human subjects H-2, H-8. Pearson’s correlation coefficient was computed,

with an average correlation of 0.478 in all ten human subjects. For comparison

purposes, we use identical scales in all of the plots for a given subject. All figures for

the transformation-based ventilation in this chapter were reproduced from [87].

Figure 3.9 shows one example subject to illustrate the differences between the

inconsistent ventilation map (γ > 1) for the IJAC and TJAC methods. Both maps
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Figure 3.5. IJAC (top) and TJAC (bottom) color maps of (left to right) scan one
Jacobian, scan two Jacobian, Jacobian ratio, and gamma map for human subject H-2.
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Figure 3.6. IJAC (top) and TJAC (bottom) color maps of (left to right) scan one
Jacobian, scan two Jacobian, Jacobian ratio, and gamma map for human subject H-8.
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Figure 3.7. Reproducibility results for human subject H-2. (a) IJAC density scatter
plot and marginal histograms. (b) IJAC modified Bland-Altman plot. (c) TJAC
density scatter plot and marginal histograms. (d) TJAC modified Bland-Altman
plot.
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Figure 3.8. Reproducibility results for human subject H-8. (a) IJAC density scatter
plot and marginal histograms. (b) IJAC modified Bland-Altman plot. (c) TJAC
density scatter plot and marginal histograms. (d) TJAC modified Bland-Altman
plot.
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are calculated after respiratory effort correction and use the same color scale. Regions

that passed the gamma test (γ ≤ 1) were not overlaid with color. Figure 3.9 shows the

TJAC inconsistent ventilation regions are more focal and fewer in number than the

IJAC inconsistent ventilation regions. Similar results were observed for the other nine

human data sets. In several cases, TJAC defects were limited spatially to the lower

lobes of the lung, while in all cases we observed IJAC inconsistent ventilation regions

throughout the lung. In other words, TJAC reported changes in ventilation between

scanning sessions that were physiologically clustered, primarily in the lower lobes

where ventilation is greatest. Alternatively, IJAC reported changes in ventilation

that were small in volume and distributed randomly in all lobes of the lung.

If the subject, image acquisition, image registration and ventilation analysis

were perfectly reproducible, the ventilation values computed from scan one and scan

two would match exactly at each voxel, the gamma maps would be equal to zero, the

correlation coefficients would be equal to one, and the standard deviation of the ratio

map would be equal to zero. Table 3.2 lists the statistics for intensity-based Jacobian,

and transformation-based Jacobian. It summarizes statistical parameters including

Pearson’s correlation coefficients, gamma pass rate, gamma pass rate after effort

normalization, and standard deviation of the ratio map. Compared to the statistics

table in [87], Table 3.2 adds the gamma pass rates for the transformation-based

Jacobian. Due to the thresholding of pulmonary parenchyma voxels, the ventilation

map may have “holes”, therefore the standard deviation is calculated only for those

voxels where JACT1 and JACT2 both have ventilation values. The reproducibility of
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Figure 3.10. The gamma pass percent changes with different ∆p0 in Equation 3.13 for
the intensity-based Jacobian, IJAC, and, the transformation-based Jacobian, TJAC.
(a) Average of 3 sheep data sets with normalization; (b) Average of 10 human data
sets with normalization.

the transformation-based Jacobian is described more completely in [87].

In Equation 3.13, ∆p0 is the value tolerance criterion and ∆d0 is the distance

tolerance criterion in the gamma metric. Both relaxed ∆p0 and relaxed ∆d0 will

increase the possibility for one voxel to find a similar ventilation value in the other

map within a given neighborhood. Figure 3.10 shows the gamma pass percent for

different ∆p0 for TJAC and IJAC, with ∆d0 = 4 mm.

3.4.3 Effects of Low-pass Filtering

. To test how different levels of filtering affect reproducibility, we processed the

data for all human subjects with different amounts of low-passing filtering applied to

the CT images prior to registration. Figures 3.11 show the effects of different levels of

low-pass filtering on reproducibility for subject H-8. The top row shows the sagittal

view of JACT1 and the bottom row shows the smoothed color density scatter plots.
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Ordered left to right, the smoothing kernel sizes for filtering on the original CT images

are 7 × 7 × 7, 11 × 11 × 11, and 15 × 15 × 15 voxels.

Figure 3.12 shows change of average gamma pass percent and average cor-

relation coefficient for all human subjects with different levels of low-pass filtering

on original CT images. The horizontal axis shows the neighborhood radius in local

averaging. The solid line in blue shows the gamma pass percent for IJAC, and the

gamma pass percent for TJAC is also drawn in blue dashed line for comparison. The

green dotted line shows the correlation coefficient for IJAC, and the green dashed line

on the top shows the correlation coefficient for TJAC.

3.5 Discussion

In this study we examined the reproducibility of the intensity-based measure

of ventilation using two separate 4DCT image sets within a short interval between ac-

quisitions. We compared these results to those from a transformation-based measure

of ventilation. Mechanically-ventilated sheep and human subjects prior to receiving

radiation therapy were studied. Since neither the ratio nor difference is appropriate

for reproducibility evaluation of intensity-based ventilation, we introduced the gamma

indices which consider both ventilation differences and distance to agreement. A nor-

malization strategy was used to compensate for different breathing efforts in the two

4DCT acquisitions. In both intensity-based and transformation-based ventilation,

we found the reproducibility obtained in anesthetized, mechanically ventilated ani-

mals is slightly better than for the spontaneously-breathing humans. All statistical

parameters, including correlation coefficients, gamma pass percentage, and standard
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Figure 3.11. Effects of increased low-pass filtering on reproducibility for subject H-
8. The top row shows the sagittal view of JACT1 and the bottom row shows the
smoothed color density scatter plots. Ordered left to right, the local average kernel
sizes for filtering on the original CT images are 7 × 7 × 7, 11 × 11 × 11, and 15 ×
15 × 15 voxels. Histograms and summary statistics are given along the top and right
side of each plot. Colorscale is same as in Figure 3.4.

deviation of ratio map, indicate the reproducibility of intensity-based ventilation is

worse than that of transformation-based ventilation. The reproducibility of the hu-

man IJAC maps showed as correlation coefficients 0.45±0.14, gamma pass rate 70±8

without normalization and 75±5 with normalization. The reproducibility of the hu-

man TJACmaps showed as correlation coefficients 0.81±0.10, gamma pass rate 86±11

without normalization and 93±4 with normalization. To study the impact of noise

from original CT on the final intensity-based ventilation map, we developed analyt-
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ical models and investigated reproducibility improvement with increased filtering on

the CT images. We found that the low-pass filtering in intensity-based ventilation

calculation can help remove extreme ventilation values, however the increase of re-

producibility is limited, and the spatial resolution of the resulting ventilation map is

reduced.

Figures 3.3 shows the reproducibility of the calculated intensity-based Jacobian

in the animal model. Though the patterns appear similar, there are still considerable

regional differences between JACT1 and JACT2 ◦T0. The original-repeat scan voxel-

by-voxel correlation coefficients for IJAC range from 0.369 to 0.350 for these animals.

Figure 3.4 compares the reproducibility of IJAC and TJAC. We can see the scatter

plot of IJAC is more dispersed than that of TJAC. While the scatter distribution of

TJAC converges well to the regression line, the linearity of IJAC almost disappear.

Since these subjects are anesthetized and mechanically-ventilated animals, they likely

represent the best possible case in terms of ventilation map reproducibility.

Figures 3.5 and 3.6 show examples of data from human subjects with good

and poor reproducibility based on the statistical parameters in Table 3.2. The lung

volumes in Table 2.3 shows that subject H-2 has more consistent lung volumes and

tidal volumes than subject H-8. If H-8 has poor reproducibility because of variations

in lung volumes and tidal volumes, it may reveal that ventilation regions are not

consistently distributed under different pressures. Figure 3.7 and 3.8 shows the IJAC

vs. TJAC comparison of scatter plots for subject H-2 and H-8. Subject H-8 had

a greater expansion in scan two than in scan one, and it is easy to see that this
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respiratory effort difference is clearly reflected in mass center of scatter points over

the reference line y = x in both IJAC and TJAC. These scatter plots and histograms

clearly show the reproducibility of IJAC is worse than that of TJAC. With the same

data, processing, and registration algorithm, the poor reproducibility performance of

intensity-based ventilation may be due to the high noise sensitivity of the calculation

itself.

Table 3.2 lists statistical parameters for evaluating reproducibility. H-4 had

an inter-scan interval of 20 hours and H-8 had an inter-scan interval of 7 days, which

is much longer than that for any of the other subjects. However, we do not see

any noticeable difference in reproducibility for these two subjects compared to the

others. The global linear normalization using lung volumes [87] can offset the effects

of different respiratory efforts in the two 4DCT scans and scale the ventilation values

of scan two to the same range of scan one. Higher gamma pass rate is found after

normalization as shown in Table 3.2. The correlation coefficient between two Jacobian

maps and the standard deviation of Jacobian ratio map for IJAC are several times

worse than those for TJAC. For all subjects the gamma pass percentage of IJAC is

lower than that of TJAC, even after breathing effort normalization. Even though it is

known that lung expansion and contraction are not uniform apex to base and ventral

to dorsal [87], the subject-specific normalization used to compensate for varying effort

between studies in Equation 3.16 is a useful normalization scheme in this situation to

compare ventilation maps across scans and calculate gamma indices across subjects.

More sophisticated approaches for normalizing for differences in tidal volume may
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provide even better results, and this is an area of active research.

Recently Yamamoto et al. [86] also investigated the reproducibility of ventila-

tion, using two cohorts of patients imaged over two different inter-scan intervals. A

transformation-based metric (TJAC−1) was used to represent volume change. Mod-

erate voxel-based correlation was reported between two ventilation images (Spearman

rank correlation 0.50±0.15). However, we reported correlation coefficients 0.81±0.10

for the human TJAC ventilation estimate. We speculate that reproducibility can be

influenced by many factors, such as image acquisition parameters, patient motion

control, variations in respiratory rates and pattern, image registration, and ventila-

tion metrics. They found respiratory variation during 4DCT scans would deteriorate

the reproducibility, which is consistent with our observation.

Figure 3.9 shows that regions of inconsistent ventilation are more numerous

and spatially distributed for the intensity-based Jacobian when compared to the

transformation-based Jacobian. In addition, the data in Table 3.2 and Figure 3.10

show that the total number of voxels with γ > 1 is less for the transformation-based

approach compared to the intensity-based approach. This may be due to the increased

noise sensitivity of the intensity-based method compared to the transformation-based

approach. To track changes in ventilation in a longitudinal study, it is important

for the measurement methods to be reproducible and as robust to noise as possi-

ble. While we observed similar results to those as shown in Figure 3.9 for all human

subjects, a more complete and quantitative evaluation of the spatial distribution of

the inconsistent ventilation regions needs to be performed before drawing any final
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conclusions.

Compared to transformation-based ventilation, which is directly calculated

from the deformation gradient tensor, the intensity-based ventilation approach is de-

rived from both the deformation and intensities of involved CT images. Castillo et

al. [14] showed visual and quantitative differences between TJAC and intensity-based

SAC. They also concluded that the intensity-based method showed better spatial

correction with the clinical standard of nuclear medicine exams. Mathematically,

both ventilation approaches make use of deformable image registration. After the

displacement field is established, the transformation-based Jacobian is directly cal-

culated, while the intensity-based method uses the original CT images for intensity

information, which may introduce additional noise. Therefore, the TJAC is influ-

enced by image registration error, however intensity-based method is influenced by

both registration error and CT intensity noise. The analytical error analysis of the

SAC and IJAC measurements that shows the impact of CT noise on the measure-

ments may be large and should not be neglected. As shown in Table 3.2, for all

subjects the gamma pass rate of the TJAC maps is much higher than that of the

IJAC maps.

The Equation 3.7 provides a way to link the SAC and Jacobian, which have dif-

ferent definitions and quantities to show tissue expansion as described in Section 3.2.

The conversion from SAC to IJAC puts the intensity-based ventilation into the same

units as TJAC and make it easier for direct comparison. Since the intensity-based

ventilation metrics can be converted from one to another, the reproducibility results
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of the SAC and IJAC in this chapter are representative of all ventilation metrics using

the intensity-based strategy.

Due to the overlay of pulmonary parenchyma mask [-999,-250] to the ventila-

tion computation, not all lung locations are allocated a ventilation value. Combined

with this non-linearity and existence of zero values, these restrictions limit the appli-

cation of ratio or difference metric for direct validation of regional ventilation. We

introduce the gamma index to address the problem of mismatch by considering neigh-

borhood voxels in a certain distance. From Figure 3.10 we can see for both sheep and

human subjects, the gamma pass percentage of IJAC is always lower than that of

TJAC for different criterion ∆p0. Take the human subjects in Figure 3.10 (b) for ex-

ample, to achieve as good pass percentage as TJAC at ∆p0 = 0.1, the criterion ∆p0 for

IJAC has to be relaxed to as high as 0.3, indicating the worse reproducibility of IJAC.

When ∆p0 changes from zero to infinitely large, the gap between IJAC and TJAC

gamma pass percentage first increases and then decreases. The ∆p0 that corresponds

with the maximum gap may represent the fluctuation percentage of intensity-based

ventilation caused by CT HU noise. Another noteworthy phenomenon can be found

in Figure 3.10 (a) and (b) that when ∆p0 is extremely small, e.g. less than 0.02, the

gamma pass percentage of IJAC is higher than that of TJAC. This might be explained

that in the case of when ∆p0 is small, in fact the fluctuation in IJAC map helps the

gamma index algorithm find similar ventilation values in the neighborhood in the

other map, if we imagine scan one and two ventilation maps as two distributions of

values with slightly biased centers.
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Figure 3.11 show JACT1 ventilation map and scatter plots after different levels

of local averaging on original CT images involved in IJAC computation. Compared

to Figure 3.6, the IJAC map appears more smooth with heavier smoothing. However,

the pattern of scatter plots does not change much except noise is suppressed partly

with increased smoothness. As shown in Figure 3.12, the gamma pass percentage and

correlation coefficient of IJAC did increase gradually with smoothing, but still much

lower than the parameters of TJAC even with extremely heavy smoothness like kernel

size 15 × 15 × 15. When increasing the smoothing radius from 1 to 7 voxels, the pass

rate and correlation coefficient of intensity-based ventilation measurements increased

modestly, i.e. only 25% of the difference between them and the transformation-based

results. Moreover, increased filtering, may cause that small, but important, variations

in regional ventilation are lost by the filtering operation.

3.6 Summary

In this chapter we examined the reproducibility of two intensity-based ventila-

tion metrics as a estimate of lung function and compared them with a transformation-

based measure of ventilation. The transformation-based ventilation maps show better

reproducibility than the intensity-based maps, especially in human subjects, when

comparing the correlation coefficients and the gamma index. Reproducibility was

also found to depend on changes in respiratory effort; all techniques were better when

normalization for changes in tidal volume were applied to images from mechanically

ventilated sheep compared to spontaneously-breathing human subjects. Nevertheless,

intensity-based techniques applied to mechanically ventilated sheep were less repro-
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ducible than the transformation-based applied to spontaneously-breathing humans,

suggesting the method used to determine ventilation maps is important. We have

developed an analytical model of how CT image noise affects the intensity-based

ventilation. Pre-filtering of the CT images may help improve the reproducibility

of the intensity-based ventilation measurements, but even with filtering the repro-

ducibility of the intensity-based ventilation measurements are not as good as that

of transformation-based ventilation measurements. When increasing the smoothing

radius from 1 to 7 voxels, the pass rate and correlation coefficient of intensity-based

ventilation measurements increased modestly, i.e. only 25% of the difference between

them and the transformation-based results. The pass rate of gamma index, which is

specially designed for validation of intensity-based ventilation, and other statistical

parameters show transformation-based Jacobian is more reproducible than intensity-

based Jacobian. The superior reproducibility of the transformation-based technique

appears to allow smaller changes in ventilation to be measured; a 10% change in ven-

tilation was observed between measures of ventilation derived from repeat scans <

10% of the voxels, compared to ∼ 30% of the voxels when intensity-based techniques

are used.
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CHAPTER 4

RESPIRATORY EFFORT CORRECTION STRATEGIES TO
IMPROVE THE REPRODUCIBILITY OF LUNG EXPANSION

MEASUREMENT

This chapter is based on the following paper:

1. K. Du, J. M. Reinhardt, G. E. Christensen, K. Ding, and J. E. Bayouth: Res-

piratory Effort Correction Strategies to Improve the Reproducibility of Lung

Expansion Measurement. In submission to Medical Physics, 2013

4.1 Introduction

Regional pulmonary function, which measures the local lung volume change,

can provide valuable physiological and pathological information about lung. One

method to estimate regional pulmonary function has been developed using four di-

mensional computed tomography (4DCT) and image registration. Since 4DCT has

become a routine examination for lung cancer radiation therapy (RT) treatment plan-

ning, generating high resolution ventilation map adds no extra radiation dose to the

patient. With image registration between CT images reconstructed at specific phases

of the breathing cycle, the deformation field can be used to assess the regional pul-

monary function. Several groups have developed this approach from different as-

pects. Reinhardt et al. [11] directly calculated the determinant of the deformation

gradient tensor and used the Jacobian metric to analyze regional ventilation. Si-

mon [12] and Guerrero et al. [13] proposed density-based ventilation calculation with

the deformation field and its relationship with air fraction change. Castillo et al. [14]
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demonstrated analytic and geometric Jacobian are mathematically equivalent, and

both Jacobian-based and density-based ventilation are highly correlated with clini-

cally acquired SPECT ventilation. Longitudinal radiation-induced pulmonary func-

tion change throughout RT was investigated by several groups. Ding et al. [15]

compared regional ventilation before and after RT. Yaremko et al. [7] and Yamamoto

et al. [89] identified high ventilated lung regions as avoidance structures in intensity

modulated radiation therapy (IMRT) planning. Zhong et al. [90] presented a 4DCT-

based regional compliance method for evaluation of radiation-induced lung damage.

Vinogradskiy et al. [91] used ventilation maps calculated from weekly 4DCT data to

study ventilation change throughout radiation therapy.

The variability in pulmonary function measurement must be accounted for

when being used to identify underlying radiation-induced changes. Several groups

have investigated the reproducibility of pulmonary function measurement. In our pre-

vious work, we investigated the reproducibility of transformation-based [87] (correla-

tion coefficient 0.81±0.10) and intensity-based [88] (correlation coefficient 0.45±0.14)

measures of lung tissue expansion in two repeat prior-RT 4DCT acquisitions, and

found the reproducibility of 4DCT ventilation imaging would be deteriorated by res-

piratory effort variation. Similarly, Yamamoto et al. [86] investigated the repro-

ducibility of lung ventilation over two different time frames and reported moderate

voxel-based correlation between two ventilation images (Spearman rank correlation

0.50±0.15). However, cross-scan respiratory effort variations were not compensated

in previous reproducibility studies.
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Uncertainty in pulmonary function measurement can be caused by many fac-

tors including subject’s irregular breathing patterns and change of tidal volume in

spontaneous respiration, the imaging protocol, and choice of the ventilation met-

ric [86, 87, 88]. Since the local lung expansion is dependent on the transformation

from the EE (end of expiration) to the EI (end of inspiration) image, it will be affected

by the lung volumes at which these two images are acquired. Therefore the respi-

ratory effort (e.g., amplitude, frequency, switching between abdominal and thoracic

breathing, etc.) may play a critical role in reproducibility assessment. In our previ-

ous study [87, 88], all subjects are coached and trained to ensure steady, reproducible

breathing patterns during the 4DCT, and audible respiratory timing cues are used to

help guide the subject during image acquisition [94]. However, even with the training

and instrumentation, variations in breathing rate and tidal volume are likely to occur

which may reduce the reproducibility of the pulmonary function measurements.

The effectiveness of pulmonary function measures increases as the uncertainty

in the measurement is reduced. In this study we analyze a pair of 4DCT images

obtained prior to RT, which should ideally yield identical pulmonary function maps.

Variations in this measure will have an impact when being used as either input in-

formation into the radiation therapy treatment planning process, or for longitudinal

study of pulmonary function (e.g., following RT). Respiratory effort difference may

reduce reproducibility and therefore must be compensated for to be used in the two

applications. First, normalization schemes on respiratory effort will help establish

the post-intervention assessment of radiation-induced pulmonary function change.
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Second, another potential use of the 4DCT-based ventilation is RT treatment plan

optimization [7, 89] using ventilation avoidance maps, to avoid regions that have

higher ventilation capacity or are more sensitive to radiation dose [114]. To be in-

cluded into the RT planning system as a functional avoidance map, the ventilation

map also needs to be normalized to correct for the difference in respiratory effort.

Several methods have been proposed to normalize the respiratory effort differ-

ence. Guerrero et al. [47, 7, 14, 91] converted ventilation images to percentile images

as part of their normalization process to reduce the sensitivity to the maximum ven-

tilation value on a particular image. However, the percentile image merely computes

the rank of values rather than normalize the breathing effort difference. Vinogradskiy

et al. [91] used another normalizing method proposed by Seppenwoolde et al. [115].

They defined a normalization factor calculated from well-ventilated low-dose regions

and applied it to the entire image. Similarly, Zhang et al. [116] corrected SPECT

scans for effort differences with a global scaling factor derived from a region of in-

terest in the uninvolved lobe. They are both global normalization using one scaling

factor applied to the entire image. The global normalization approach is based on

the assumption and/or approximation that the lung expansion rate is spatially uni-

form. If the assumption is not true, the global normalization method will arbitrarily

overnormalize or undernormalize regional ventilation values.

One of the advantages of 4DCT data for this purpose is that it consists series

of CT images resolved into different phases of the breathing cycle [117, 118]. The

4D nature of the data implies that breathing effort difference can be corrected by
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choosing phase images with equivalent/similar lung volume or tidal volume, rather

than merely registering EE and EI. In this chapter we propose two strategies to

select phase images, the equivalent tidal volume (ETV) method and the equivalent

lung volume (ELV) method. These two approaches differ from other normalization

methods in that they select independent respiratory phases to compute pulmonary

function, rather than modify the computed ventilation values directly. In this study

we quantify impact of global normalization on 4DCT from subjects and compare

and determine which method (if any) best improves the reproducibility of pulmonary

function measurement.

4.2 Material and methods

4.2.1 Patients selection

All the patients for this study were chosen from a protocol that was approved

by the University of Iowa Institutional Review Board. Under the protocol, the pa-

tients underwent two 4DCT scans before radiation therapy for lung cancer. All scans

were acquired in supine position on a Siemens Biograph 40-slice CT scanner operating

in helical mode, using a pitch of 0.1, 120 kVp, 700 mAs, 1.2 mm beam collimator,

2 mm slice thickness, 0.5 mm slice increment, with a 500 msec tube rotation speed

using 180 degrees to reconstruct an image producing a temporal resolution of 250

msec [119]. Anzai AZ-773V system with a strain gauge belt as the pressure sen-

sor was used to acquire the surrogate signal of respiratory motion. To maintain a

constant breathing rate, prior to imaging, patients were trained by a biofeedback

system (RESP@RATE, Intercure Ltd., Lod Israel). Audible respiratory timing cues
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Figure 4.1. Retrospective reconstruction of 3D volumes based on respiratory phase
and breathing amplitude.

were used to pace respiration during imaging [94]. Two prior-RT 4DCT scans were

acquired for each subject, with a short time between scans and the same imaging

parameters [87]. The subjects left the scanner table between scans.

As shown in Figure 4.1, after continuous spiral acquisition, the 4DCT scanner

used retrospective respiratory gating to reconstruct 3D CT volumes at any user speci-

fied phase. Using the breathing monitoring curve as the reference, exact retrospective

3D volumes can be reconstructed from the 4D data based on respiratory phase and

breathing amplitude. For each scan ten 3D CT images were produced, one at the end-

expiration (EE, also denoted as 0%EX or 0%IN), four during inhalation in increments

of 20% inspiration (20%IN, 40%IN, 60%IN, 80%IN), one at the end-inspiration (EI,

also denoted as 100%IN), and four during exhalation in increments of 20% expiration

(80%EX, 60%EX, 40%EX, 20%EX) in the scanner nomenclature [96]. Additional
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phases could be reconstructed at different amplitudes if needed. The audio-coaching

on patient respiration and the advantage of helical mode to allow manual selection

of projection data could reduce and minimize the common artifacts in 4DCT [96].

Before image registration, all images were examined for evidence of severe breathing

artifacts or other problems which may be caused during acquisition and reconstruc-

tion. 24 patients that needs correction for respiratory effort difference were chosen in

this study.

4.2.2 Calculation of ventilation maps

The process of calculating ventilation maps with 4DCT and image registration

was described in detail in our previous work [87]. First, prior to image registration all

images were resampled to proper size and resolution. The Pulmonary Workstation

2.0 software (VIDA Diagnostics, Inc., Iowa City, IA) helped delineating the lung

voxels in CT images. All of the lung segmentations were examined and manually

modified if necessary. The lung segmentation was used to limit the spatial domain

of image registration, subsequent ventilation calculation, and statistics analysis. The

lung volume was calculated by multiplying the number of voxels with the volume of

each voxel. Table 4.1 in Section 4.3.2 lists the lung volume of all inspiratory phases

for three example subjects.

Two separate 4DCT scans (denoted as scan one and two) were acquired prior

to RT with a short time interval for each subject. Ventilation maps were computed in-

dependently in the two scans and then compared in the same coordinate to determine

the reproducibility of lung ventilation measurements. For each scan, ten CT volumes
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were reconstructed including five inspiration phases and five expiration phases. Two

volumes during inspiration can be selected to be registered by deformable image reg-

istration to produce a ventilation map. For ETV and ELV effort correction strategies,

in addition to registration between the peak exhalation EE and the peak inhalation

EI in each scan [87], intermediate breathing phases during inspiration were picked

and registered, according to either equivalent tidal volume or equivalent lung volume

to offset the breath effort difference in two scans.

A tissue volume preserving nonrigid algorithm was used for image registra-

tion [97, 109, 87]. In a multi-resolution optimization framework, the algorithm reg-

isters 3D CT images by minimizing the sum of squared tissue volume difference

(SSTVD) [63] and a weighted laplacian regularization constraint in a cubic B-spline

transformation model. The SSTVD similarity term was specially designed for lung

image registration to compensate for the expected change in CT intensity due to

inspired or expired air during respiration [63]. Subvoxel accuracy of the image regis-

tration algorithm has been reported in previous work of Du et al. [109, 120, 87], Cao

et al. [97, 98] and Murphy et al. [93].

A displacement field that links corresponding lung voxels in two images is

produced after image registration. The Jacobian determinant of the displacement

field characterizes the local lung volume change and is used as the ventilation met-

ric in this study. The Jacobian is given by Equation 2.5 as presented in Chapter 2,

where (h1(x), h2(x), h3(x)) represents vectors in three dimensions of the deformation

field at location x. Encoded by colors, the Jacobian map will show regional ventila-
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tion throughout the lung. In the Lagrangian reference frame, Jacobian greater than

one represents local tissue expansion, Jacobian less than one represents local tissue

contraction, and Jacobian equals to one means no expansion or contraction.

If we use T1 and T2 to denote the registration transformations in scan one and

two, the two scans would produce Jacobian maps JACT1 and JACT2. The computed

Jacobian map was always defined at EE, or defined at the breathing phase with smaller

lung volume in ELV. Since scan one and two are independent 4DCT acquisitions, we

need to put the two Jacobian maps under one coordinate system for comparison.

The target image of the image registration in scan one was used as the reference

coordinate system. Therefore one additional registration needs to be made from scan

two target image to scan one target image, resulting in transformation T0. When

analyzing the reproducibility without effort correction or with ETV, 0%IN (EE) is

used as the coordinate. However, in ELV analysis, the target image in scan one

could be an intermediate phase. For instance, if we use 20%IN and 80%IN in scan

one, and 40%IN and 100%IN in scan two, then the registration between scan two

40%IN and scan one 20%IN will be performed to build transformation T0. With the

transformation T0, JACT2 is transformed to the same coordinate of JACT1, called

JACT2 ◦ T0. The Jacobian ratio map JACRATIO, defined in the same coordinate

system as JACT1, is a voxel-by-voxel ratio map of JACT1 and JACT2 ◦T0 and can be

used to assess reproducibility.
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4.2.3 Respiratory effort correction strategies

When comparing measures of ventilation acquired from different studies, mea-

sured values may differ due to changes in respiratory effort. This section describes

the most commonly used normalization strategy (global normalization) and two novel

strategies proposed in this study.

4.2.3.1 Global normalization

By definition, the Jacobian reflects the ratio of volumes before and after defor-

mation in a specified region. Since the average Jacobian is strongly correlated with

the global volume change in the lung [87], the lung volumes can be used to calculate a

global linear normalization factor to compensate for lung volume differences between

scans one and two.

Suppose Ia and Ib denote the fixed and moving image respectively in image

registration. Jacobian map J1 is calculated from the displacement field between two

images I1a and I1b, and Jacobian map J2 is calculated from the displacement field

between two images I2a and I2b. We use Vi to denote the lung volume of image

Ii. Then the Jacobian map J2 can be globally normalized to match with the global

inflation level of J1.

Jnorm2 = J2 ×
V1b

V1a

V2b

V2a

(4.1)

where Jnorm2 is J2 after global normalization derived from the ratio of lung volumes in

scan 1, normalized by the ratio of lung volumes in scan 2.

The global scaling normalization uses one factor applied to the entire image,

commonly based on a ratio of ventilation or perfusion measures acquired from an
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identical region in the two scans that is assumed to be uninvolved. The global scaling

approach is based on the assumption and/or approximation that the lung expansion

rate is spatially uniform. Alternatively, these would not be valid if the expansion

rate in the apex is not proportional to expansion in the base for all intermediate tidal

volumes between EE and EI.

4.2.3.2 ETV and ELV

The basic approach used in global normalization is to compute ventilation

from images with known differences in respiratory effort and to scale those values.

We propose careful selection of the input data, rather than performing post-processing

corrections. This is accomplished by selecting CT images with similar lung volumes

or tidal volumes, allowing calculation of the Jacobian under more similar conditions.

This technique exploits one of the advantages of 4DCT images, which provides CT

images with many different lung volumes. Other than EE and EI images, additional

respiratory phases were selected to compute pulmonary function and evaluate repro-

ducibility. This strategy was applied to repeat 4DCT scans of the 24 subjects as

described below.

Figure 4.2 shows the schematic of two respiratory effort correction strategies.

The red line is the baseline scan, while the orange line is the followup scan. Scan

one is used as the baseline scan. Figure 4.2 (a) is the ETV method that uses a

pair of images selected from the followup 4DCT scan that produces a tidal volume

equivalent to that of the baseline scan. Figure 4.2 (b) is the ELV method that uses

a pair of 3D CT images selected from the followup scan that maximizes the volume
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difference between images and has corresponding images at the same lung volumes

in the baseline 4DCT scan. We will compare these methods against one another,

with global normalization, and before correction to determine which (if any) better

improves reproducibility of pulmonary function measurement.

(a) (b)

Figure 4.2. Schematic of respiratory effort correction strategies. The red line is the
baseline, while the orange line is the followup scan. (a) ETV and (b) ELV.

To further test the effectiveness of the ETV method, an experiment is designed

by testing pairs of images with other possible tidal volumes in the followup scan and

then comparing them with the end-to-end ventilation map from the base line scan.

Figure 4.3 illustrates the experiment design. Suppose scan one has a smaller tidal

volume (less respiratory effort) than scan two, with the ETV method we will attempt

to find an intermediate inspiratory phase from scan two that produces equivalent or

best matching tidal volume to that of scan one. Suppose scan two 60%IN has the
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best matching tidal volume to that of scan one 100%IN. In this example, other than

60%IN, we will also test using 20%IN, 40%IN, 80%IN and using 100%IN (means no

correction) from scan two to study how the reproducibility parameters change with

different scales of tidal volume disagreement across scans. In this experiment, the

scan with less effort is chosen as the baseline scan, for subject H-9, scan two 100%IN

is compared to all scan one phases.

20%IN

60%IN

80%IN

100%IN

40%IN

0%EX

20%IN

0%EX

100%IN

80%IN

60%IN

40%IN

Scan1 Scan2

Figure 4.3. Diagram showing the experiment to test the effectiveness of ETV. Other
than the best ETV pairs in scan one and two, pairs with different tidal volumes are
assessed.

4.2.4 Characterizing heterogeneity of lung expansion

One 4DCT scan of subject H-8 was chosen to demonstrate the heterogeneity

in lung expansion rate, as shown in Figure 4.5 and Figure 4.6. If the lung expansion

rate is spatially uniform, the Jacobian map from 40%IN to 60%IN and the Jacobian

map from 60%IN to 80%IN should be identical or be proportional to each other

everywhere, and their histograms should have the same shape. The results for this
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experiment are shown in (a) and (b) of Figure 4.5 and Figure 4.6.

Additional experiment is performed to determine heterogenous spatial pattern

of ventilation rate on the lobar level. The same scan as in (a) and (b) of Figure 4.5

and Figure 4.6 was used to plot how the mean Jacobian (calculated from EE to

each inspiratory phase) in each lobe changes with different tidal volumes (results

shown in in (c) of Figure 4.5 and Figure 4.6). Referring to the right lower (RL)

lobe, the relative expansion rate of the other four lobes were studied (result shown

in in Figure 4.5 (d) and Figure 4.6 (d)). The hypothesis is if the lung expansion

is spatially homogenous, the ventilation rate in RL should be proportional to the

other lobes. Global normalization would be demonstrated to be inapplicable if the

ventilation rate in one lobe is not proportional to the other lobes when tidal volume

is greater than certain number. However, we can see with increasing lung expansion

level, the other four lobes do not expand at the same rate as RL lobe, and even

different expansion rates to each other.

If calculated from registered EE and EI images, the Jacobian means cumulated

lung expansion in the entire inspiration process. However, regional tissue expansion

rate varies both spatially and temporally. Introducing intermediate inspiration phases

brings several additional time sampling of lung expansion pattern. With the hypoth-

esis of homogeneous lung expansion rate, which is the theoretical basis of global nor-

malization, the only difference for each time sampling of the lung expansion should

be the magnitude, i.e. the Jacobian maps will become identical to each other after

scaling by certain constant. Hence, the heterogeneity of lung expansion can be quan-
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tified by comparing the global normalized Jacobian map from EE to each specific

phase with the Jacobian maps from EE and EI.

Global Normalization

( )

Intra-scan 

Heterogeneity 

Analysis

Mean Absolute 

Difference

Scatter plots

Figure 4.4. Flowchart of the intra-scan global normalization and intra-scan lung
expansion heterogeneity analysis. The Jacobian map from EE to each specific phase
(phase ∈ {20%IN, 40%IN, 60%IN, 80%IN}) is globally normalized to the inflation
level of full inspiration and then compared with the Jacobian map from EE to EI.

Figure 4.4 shows a flowchart of the intra-scan lung expansion heterogeneity

analysis. Within a 4DCT scan, each Jacobian map from EE to a specific inspiration

phase was scaled using global normalization to the same inflation level of Jacobian

map from EE to EI, with a factor calculated from lung volumes. Since CT volumes

were reconstructed using the retrospective respiratory gating technology from multiple

breathing cycles according to the amplitude of respiratory trace (Figure 4.1), the

term of 0%IN volume is equivalent to the term of 0%EX volume when indicating the

beginning phase of inspiration. The equation 4.2 shows the process of the intra-scan

global normalization that normalizes Jacobian maps from EE to an inspiration phase

to the Jacobian of full inspiration:

J
norm
0IN→Phase = J0IN→Phase ×f(VPhase) = J0IN→Phase ×

V100IN

V0IN

VPhase

V0IN

= J0IN→Phase×
V100IN

VPhase

, (4.2)

where phase ∈ {20%IN, 40%IN, 60%IN, 80%IN}, f(VPhase) is the global normalization



www.manaraa.com

118

factor, and V0IN, VPhase, and V100IN are lung volumes. The mean absolute difference

is calculated for all lung voxels between the Jacobian map from EE to EI and the

global normalized Jacobian map from EE to each specific phase by equation 4.3:

Mean Absolute Difference =

N∑
n=1

|J0IN→100(n)− Jnorm
0IN→Phase(n)|

N
, (4.3)

where Jnorm
0IN→Phase is Jacobian map after intra-scan global normalization, n represents

each lung voxel, and N is the total number of lung voxels.

Both scans from all subjects were processed for the heterogeneity analysis. To

study whether the heterogeneity increases with longer interval, we also investigate

the relationship between heterogeneity and the inverse of the scaling factor, which

represents the fraction of full inspiration for a specific intermediate phase compared

to EI.

4.2.5 Outcome metrics and statistical analysis

In this study four outcome metrics were used to evaluate the reproducibility:

1) mean of JACRATIO, which should be closer to one if reproducibility improves. 2)

voxel-by-voxel coefficient of variation (CV) of JACRATIO, where smaller CV would

suggest smaller regional difference between JACT1 and JACT2 ◦T0 and thus indicate

improved reproducibility. Since global normalization simply scales the whole ventila-

tion map with a factor, there is no change in CV after global normalization. 3) mean

square error (MSE) of JACT1 and JACT2 ◦ T0, where lower MSE indicates better

reproducibility. 4) gamma pass rate. We have proposed in previous work [88, 120]

a modified gamma index to compare two ventilation maps regionally and quantita-
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tively. In addition to considering the ventilation difference, the gamma index adds

a term to tolerate possible spacial misalignment. A voxel that passes gamma index

evaluation implies that there is a matching voxel in the other ventilation map with

less than the specified criterion for ventilation difference within a certain distance.

The pass rate is computed by counting all passed voxels and then dividing by total

number of pulmonary parenchyma voxels.

In all 24 subjects that were used in this study, ETV applies for 18 of them, and

ELV applies for 21 of them. ELV is not suitable for some subjects that had significant

shift of breathing baseline. For example, for subject H-7 the EE lung volume of scan

two is almost as high as the EI lung volume of scan one (Figure 4.9). To the contrary,

some subjects have intermediate phases applicable for ELV, but under ETV selection

strategy no breathing phase is more optimal than the original EI phase before normal-

ization. The four reproducibility outcome metrics were calculated and analyzed using

subject-specific tidal volume difference across scans. All three effort correction strate-

gies were applied and assessed for their improvement of reproducibility, compared to

making no correction for respiratory effort differences between scans. Comparisons

were performed between global and ETV, between global and ELV, and between ETV

and ELV on entire cohort and the cohort that have tidal volume difference greater

than 100 cc.
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4.3 Results

4.3.1 Results: heterogeneity of lung expansion

Figure 4.5 and Figure 4.6 shows the heterogeneity in the spatiotemporal pat-

tern of ventilation rate using scan two of subject H-8. Figure 4.5 (a) and Figure 4.6

(a) shows the coronal and sagittal colored panel of Jacobian in registration pairs

40%IN to 60%IN (lung volume from 3.63 L to 4.05 L) and 60%IN to 80%IN (lung

volume from 4.05 L to 4.36 L). The regions that are highly ventilated during 60%IN to

80%IN do not simply scale proportionally during 40%IN to 60%IN, i.e, the pattern of

ventilation changes. Their corresponding Jacobian histograms also present different

patterns as seen in Figure 4(b), where far fewer voxels expand with a Jacobian value

greater than 1.15 during the later stage of ventilation. (c) and (d) of Figure 4.5 and

Figure 4.6 show the heterogenous tissue expansion rate for different lobes from EE to

each respiratory phase. (c) of Figure 4.5 and Figure 4.6 shows the average Jacobian

for the left upper (LU), left lower (LL), right upper (RU), right middle (RM), and

right lower lobe (RL) along with the whole lung. As expected, greater ventilation is

seen in the two lower lobes of the lung. (d) of Figure 4.5 and Figure 4.6 shows the

ventilation in each lobe when normalized to the ventilation in the right lower lobe,

consistent with conventional respiratory effort correction strategies. The lobar ven-

tilation shows as high as 20% difference when the tidal volume is 0.8 L, and around

30% difference when the tidal volume is 1.2 L. These results demonstrates that the

ventilation rate is not uniform throughout the lung, not even at the lobar level. The

ventilation rate for the left lower lobe is similar to the right lower lobe, but the upper
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and middle lobes show more heterogeneous air filling rates.

Figure 4.7 and Figure 4.8 show results of the intra-scan lung expansion hetero-

geneity analysis, which evaluates these differences at the voxel level. If ventilation is

independent of spatiotemporal effects, ventilation patterns produced during the initial

phases of inspiration could be scaled globally without deviation from the ventilation

map determined at the end of inspiration. This intra-scan study approach allows the

end of inspiration map to be used as ground truth. Figure 4.7 shows the original

and the globally normalized Jacobian maps computed for this intra-scan experiment

performed, for scan one and scan two of subject H-8. For this scan, all Jacobian maps

were globally normalized to the inflation level of Jacobian from EE to EI. Since scan

two had a greater respiratory effort than scan one for this subject, for comparison all

the Jacobian maps of scan two were additionally globally normalized to the scale of

Jacobian of full inspiration in scan one. We can see after global normalization there

are still differences between the ventilation maps from different inflation levels. The

global normalization did not consider the regional difference of the lung expansion

rate. For example, when the Jacobian from EE to 20%IN in scan one was normalized

to the full inspiration level of scan one, the magnitude of the ventilation changed

but the distribution pattern did not change. For instance, some regions are going to

expand with higher rates in next phases - they will be undernormalized by the global

normalization, such as the dorsal lung; while some regions are going to expand with

lower rates in next phases - they will be overnormalized by the global normalization,

such as the ventral lung.
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Figure 4.5. A Scan one of subject H-8 is used to show the heterogenous tissue ex-
pansion rate. (a) shows the coronal (top) and sagittal (bottom) view of Jacobian for
registration pair 40%IN to 60%IN and 60%IN to 80%IN (left to right). The scale is
both 0.9 to 1.2. (b) shows the corresponding histograms of the two Jacobian maps
in (a). (c) shows the average tissue expansion from EE to each respiratory phase for
each lobe and the whole lung. (d) shows the tissue expansion for lobes LU, LL, RU,
RM, relative to lobe RL.
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Figure 4.6. Scan two of subject H-8 is used to show the heterogenous tissue expan-
sion rate. (a) shows the coronal (top) and sagittal (bottom) view of Jacobian for
registration pair 40%IN to 60%IN and 60%IN to 80%IN (left to right). The scale is
both 0.9 to 1.2. (b) shows the corresponding histograms of the two Jacobian maps
in (a). (c) shows the average tissue expansion from EE to each respiratory phase for
each lobe and the whole lung. (d) shows the tissue expansion for lobes LU, LL, RU,
RM, relative to lobe RL.
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Another observation worth mentioning is that the ventilation map of EE to

80%IN, compared to that of EE to 20%IN, is more similar to the ventilation map

for full inspiration. It suggests the global normalization may be adequate when tidal

volume difference is small. Figure 4.8 (a) and Figure 4.8 (b) show the scatter plots of

how the ventilation difference and the associated global normalization error change

with different fractions of full inspiration. The horizontal axis VPhase

V100IN
enables a nor-

malized measure of fraction of full inspiration across different subjects. Figure 4.8 (a)

shows the ventilation difference increases when the phase is further away from full in-

spiration (R = 0.97). In comparison, Figure 4.8 (b) shows quantitative heterogeneity

results for scan one and scan one for all subjects, determined using equation 4.2. A

linear correlation is found between global normalization error and the fraction of full

inspiration (ratio of VPhase and V100IN, can be understood as a parameter for time

interval). The vertical axis is the mean absolute difference in the globally normalized

Jacobian maps. A linear relationship between lung expansion heterogeneity and the

inflation level was observed with high correlation (R = 0.79). Figure 4.8 (b) shows

the limitations of global normalization to address the complexity of respiratory effort

normalization, which may require both a spatial and temporal component.

4.3.2 Results: phase selection in ETV and ELV

Figure 4.9 shows the lung volumes of two repeat scans for two sample subjects

H-7 and H-8. The solid line represents scan one, and the dot line represents scan

two. In Table 4.1 we list the lung volumes for three typical subjects H-7, H-8, and

H-9. The unit of lung volume is in liters. Two extra phases 50%IN and 70%IN were
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Figure 4.7. Jacobian maps for intra-scan lung expansion heterogeneity analysis after
global normalization, for subject H-8. Since scan two had a greater respiratory effort
than scan one for this subject, for comparison purpose all the Jacobian maps of scan
two were further globally normalized to the scale of Jacobian of full inspiration in
scan one. (a) Scan one, (b) scan two.
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Figure 4.8. Scatter plot of intra-scan lung expansion heterogeneity analysis after
global normalization. (a) Absolute Jacobian difference before global normalization.
(b) Global normalization error after global normalization.

reconstructed for scan two of subject H-8. The numbers in bold show the ETV effort

correction, and the underlined numbers show the ELV effort correction. While we

can perform both ETV and ELV correction for subjects H-8 and H-9, ELV cannot be

applied on subject H-7 because the EE lung volume of scan two is almost as high as

the EI lung volume of scan one. Similar significant shifting of the breathing baseline

was found for another two subjects.

Figure 4.10 shows the change of mean and standard deviation of JACRATIO

when different levels of breath effort in scan one and two are compared. This process

is described in Figure 4.3 and Section 4.2.3.2. The horizontal axis is the difference of

tidal volumes between EE to EI in the baseline scan and EE to intermediate phases

in the followup scan. The vertical position of each solid spot represents the mean of

JACRATIO maps. The whiskers and the numbers on top show the standard deviation

of JACRATIO. As the tidal volume difference in two scans diminishes, the mean of
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JACRATIO eventually gets closer to one (red dot line), and the standard deviation

decreases indicating better reproducibility.

4.3.3 Results: all effort correction strategies

Figure 4.11 shows the sagittal view of colored JACRATIO maps before effort

correction, after global normalization, after ETV, and after ELV for subject H-8.

The color scale for the JACRATIO maps is the same 0.7 to 1.3. For this subject, ELV

was found to have more reproducible regions than ETV and global normalization.

Figure 4.12 shows the voxel-by-voxel scatter plots of JACT1 and JACT2 ◦ T0 data,

which were encoded with colored 2D kernel density estimates [87, 101], for one sample

subject H-8 before and after the three effort corrections. Marginal histograms of

JACT1 and JACT2 ◦T0 are plotted along the top and right side of the figures, ideally

these histograms would be mirrored images of one another. By linear regression

analysis, a best fit linear model (shown as the dash line) is calculated to represent the

relationship between scan one and scan two ventilation. Line y=x is also plotted as

the reference line; ideally the data would fall on the y=x regression line. The slope

and y-intercept for each correction strategy is provided on the figure, showing the

improved reproducibility of the different approaches.

Figure 4.13 (a) shows the histograms of JACRATIO of subject H-8 for before

correction, after global normalization, after ETV correction, and after ELV correc-

tion. Since in the global normalization JACRATIO is simply scaled by a constant, its

histogram shifts closer to one but the shape does not change. The ETV and ELV

histograms become narrower and closer to one, indicating better agreement of the
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Figure 4.9. Lung volumes of 4DCT in two repeated scans for two sample subjects.
Solid line is for scan one, and dot line is for scan two. Note the scale may be different
for each subject.

−0.60 −0.40 −0.20 0.00 0.20 0.40 0.60 
0.70 

0.80 

0.90 

1.00 

1.10 

1.20 

Diff of Tidal Volume

Ja
cR

at
io

 V
al

ue
s

0.0677

0.0523

0.062

0.0695

0.0731

0.0893
0.0778

−0.40 −0.20 0.00 0.20 0.40 0.60 
0.80 

0.85 

0.90 

0.95 

1.00 

1.05 

1.10 

1.15 

Diff of Tidal Volume

Ja
cR

at
io

 V
al

ue
s

0.0654

0.0495

0.0403
0.0471

0.0527

H-8 H-9
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Figure 4.11. Sagittal view of JACRATIO before correction, after global normalization,
after ETV, and after ELV effort correction for subject H-8. The color scale is shown
on the right.

two ventilation maps. Figure 4.13 (b) shows the gamma pass rates with increasing

gamma criterion for the same subject before correction, after global normalization,

after ETV, and after ELV. We can see for this subject all three effort correction

strategies improve reproducibility. Additionally, both ETV and ELV methods, espe-

cially ELV, result in better reproducibility than the global normalization when the

ventilation difference criterion in gamma evaluation (delta p0) is below 10%.

Figure 4.14 shows the MSE and Gamma pass rate results for each effort correc-

tion strategy for all subjects. The results are provided as a function of the relationship

between the tidal volume difference in two scans and the change of reproducibility af-

ter global normalization, after ETV and/or ELV for all subjects, with regard to MSE

and gamma pass rate. The horizontal axis is tidal volume difference in liters. The

improvement of reproducibility can be read from reduced MSE and increased gamma

pass rate. It is observed that the improvement of reproducibility is particularly signif-

icant in case of greater tidal volume difference between scan one and two. We can also
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Figure 4.12. Colored density scatter plot and marginal histograms of two Jacobian
maps for subjects H-8. Before effort correction, after global normalization, after ETV
correction and after ELV correction, are shown respectively. Histograms and statistics
are given along the top and right side of each plot.
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Figure 4.13. Histograms of JACRATIO map and gamma pass rates for subject H-8
before effort correction, after global normalization, after ETV, and after ELV. The
curves for before effort correction, after global normalization, after ETV, and after
ELV are shown in solid blue, dashed blue, dashed green, and dotted red respectively.
(a) Histograms of JACRATIO map. (b) gamma pass rates.

notice that if the tidal volume difference is small, the effect of global normalization

is close to ETV and ELV, and for some subjects the normalization strategies may

deteriorate the reproducibility. ELV gave better results as tidal volume difference

increases. Figure 4.15 shows the linear correlation between tidal volume difference

and the proportional tidal volume difference, which is tidal volume difference divided

by the subject-specific average EE volume in two scans. The outlier subject shown

in red had a super small lung with big tidal volume difference. The linear correla-

tion indicates the tidal volume difference can be used to measure the effort difference

across different subjects.

4.3.4 Results: Statistical analysis

Table 4.2 summarizes the mean, CV of JACRATIO, MSE, and gamma pass rate

to evaluate reproducibility before effort correction, after global normalization, after
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Figure 4.14. Relationship between the tidal volume difference in two scans and the
change of reproducibility after global normalization, after ETV and/or ELV, pre-
sented with reproducibility parameters as modified mean square error (MSE), and
gamma pass rate between JACT1 and JACT2 ◦ T0. The horizontal axis is tidal vol-
ume difference in liters. (a) MSE. (b) gamma pass rate.
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Table 4.2. Summary of mean and CV of JACRATIO, MSE, and gamma pass rate for
reproducibility before effort correction, after global normalization, after ETV, and
after ELV across all 24 human subjects.

Parameter Before Correction After Global After ETV After ELV

Mean 1.013± 0.037 1.002± 0.016 1.000± 0.014 1.002± 0.011
CV (×10−2) 7.105± 2.076 7.105± 2.076 6.735± 2.528 6.099± 2.344
MSE (×10−2) 1.045± 0.675 0.721± 0.437 0.691± 0.512 0.567± 0.486

Gamma 63.95± 15.76 70.94± 10.34 72.89± 11.62 76.05± 11.72

The reproducibility parameters are shown as cohort mean± standard deviation)

ETV, and after ELV for all 24 human subjects (shown as mean± standard deviation

in the cohort). After effort correction, the mean of JACRATIO is closer to one, the CV

of JACRATIO and MSE decrease, and the gamma pass rate increases, all indicating

improved reproducibility. With regard to the gamma pass rate of all 24 subjects in

this study, ELV and ETV gave better reproducibility than global normalization.

Table 4.3 is a summary of MSE and gamma pass rate for the subjects with tidal

volume difference greater than 100 cc (shown as cohort mean± standard deviation),

for reproducibility before effort correction, after global normalization, and after ELV.

The MSE improved by 36% for global normalization and 57% for ELV, and the

gamma pass rate improved by 16% for global normalization and 33% for ELV. Similar

comparisons can be made between global normalization and ETV, and between ETV

and ELV. For cohort with tidal volume difference over 100 cc, the p-value with regard

to the gamma pass rate is 0.005 between uncorrected and global normalization, 0.002

between uncorrected and ETV, 0.001 between uncorrected and ELV, 0.084 between

ETV and global normalization, 0.003 between ELV and global normalization, and

0.156 between ETV and ELV. For all 24 subjects in this study, the p-value with regard
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to the gamma pass rate is 0.009 between uncorrected and global normalization, 0.002

between uncorrected and ETV, 0.004 between uncorrected and ELV, 0.045 between

ETV and global normalization, 0.036 between ELV and global normalization, and

0.341 between ETV and ELV.

Table 4.3. Summary of mean square error (MSE) and gamma pass rate for repro-
ducibility before effort correction, after global normalization, and after ELV, for the
subjects with tidal volume difference between scans greater than 100 cc.

Mean square error (MSE, ×10−2) Gamma pass rate
Before After Global After ELV Before After Global After ELV

PFS-004 0.73 0.52 0.36 65.2 66.1 87.3
PFS-008 2.62 0.74 0.34 36.3 67.3 80.7
PFS-009 1.07 0.48 0.37 51.2 69.0 74.6
PFS-011 0.70 0.62 0.29 70.9 73.7 84.9
PFS-016 2.19 2.00 1.55 51.8 55.1 64.9
PFS-017 1.52 0.97 0.24 44.0 54.6 81.4
PFS-018 1.52 0.89 0.90 42.7 57.7 52.5
PFS-029 1.55 1.23 0.98 58.4 61.7 63.8
PFS-031 0.59 0.32 0.18 68.4 82.3 90.0
PFS-032 0.59 0.55 0.69 66.1 68.2 62.7
PFS-036 1.50 0.85 0.61 44.3 59.8 68.6
PFS-037 0.57 0.48 0.12 71.7 72.3 92.3
PFS-042 0.46 0.43 0.16 74.0 74.2 88.3

Mean 1.20 0.77 0.52 57.3 66.3 76.3
Std 0.68 0.45 0.41 12.9 8.3 12.7

The reproducibility parameters are shown as cohort mean± standard deviation)

4.4 Discussion

Pulmonary function analysis across 4DCT scans will inevitably create the

problem of different respiratory effort. In order to effectively and significantly quantify

the longitudinal pulmonary function change due to radiation following RT [15, 7, 89,

91], the breath effort difference between scans before and after RT must be compen-

sated for. Additionally, to optimize the radiation treatment plan using 4DCT-based
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ventilation, normalization on ventilation maps should also be considered. In previ-

ous work, we have evaluated the reproducibility of ventilation estimates using two

repeated prior-RT 4DCT scans [87, 88]. This chapter proposed two phase-selection-

based normalization schemes (ETV and ELV), and compared them with the global

normalization for the improvement of reproducibility in repeated 4DCT scans for 24

patients. Heterogeneity in lung ventilation rates demonstrates the limits of global

normalization. Improvement in reproducibility was found to be correlated well with

the respiratory effort difference. ELV was found to be significantly better than the

other two normalization methods when differences in tidal volume were greater than

100 cc.

To our knowledge, this is the first study to investigate different normalization

methods for 4DCT-based ventilation. In our previous work, we have shown the mean

of JACRATIO is strongly correlated with the volumes ratios in scans one and two [87],

which hints a possible subject-specific global normalization using single scaling factor.

Several other groups also suggested similar global normalization by scaling entire

ventilation map with factors derived from ventilation values in a ROI or lobe that is

uninvolved by radiation [115, 116, 91]. Although true when averaged over all voxels

within the lung, in this chapter we have shown the ventilation rate of lung tissue is

not uniform either spatially or temporally when studied at the voxel level. As shown

in Figure 4.6, some regions that are highly ventilated during 40%IN to 60%IN become

less ventilated during 60%IN to 80%IN, or vice versa. The Jacobian histograms also

showed the heterogeneity of lung expansion rates. Using the right lower lobe as the
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reference, the other four lobes, especially the upper and middle lobes, show various air

filling rates. Hence, the global scaling normalization, which is true only with under

the assumption of homogeneous lung expansion rate, may arbitrarily overnormalize

or undernormalize regional tissue or lobes.

The intra-scan heterogeneity in lung expansion was studied using 48 4DCT

scans from 24 subjects. Figure 4.7 clearly showed the undernormalized and over-

normalized regions and explained the limits of global normalization. The similarity

between the ventilation from EE to EI and the global normalized ventilation from

EE to 80%IN also suggests that the weakness of global normalization may be dis-

regarded when the effort difference is small. Additional study on the relationship

between lung expansion heterogeneity and different inflation levels in Figure 4.8 (a)

and (b) show that the ventilation difference and the associated global normalization

error are is strongly correlated with the time interval, which further confirms that

global normalization may be not applicable in case of great effort difference.

Figure 4.9 shows the lung volumes in two repeated 4DCT scans for two sam-

ple subjects. Even all subjects were coached and audible respiratory timing cues

were used during imaging acquisition [94], discrepancy in lung volumes and breath-

ing patterns still occurs in repeated scans for some subjects. Figure 4.9 implies that

the 4D nature of data enables selection of phases with similar lung volume or tidal

volume. Figure 4.11 shows colored ventilation maps in sagittal view for subject H-

8 before and after effort correction. While the global normalization shows obvious

ventilation variability in the dorsal lung, the reselection of phases in ETV and ELV
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normalization methods produced JACRATIO maps that are closer to identity and more

homogeneous. The most improvement in reproducibility was found in ELV correction

for this subject.

Figure 4.12 shows scatter plots and histograms of JACT1 and JACT2 ◦T0 be-

fore correction, after global normalization, after ETV, and after ELV for the same

subject H-8. We can notice that the mean of JACT1 and JACT2 ◦T0 are closer after

every normalization method. In global normalization, a scaling factor was applied

to the whole lung, resulting in a vertical shift of the scatter points without affecting

the distribution pattern. After ETV and ELV the marginal histograms appear more

similar. The dash line is the scatter regression line of JACT1 and JACT2 ◦ T0, and

the solid line is the reference line y=x. The regression line is closer to the refer-

ence line after normalization indicating compensated effort difference, and the better

convergence of points on the regression line also reveals improved reproducible venti-

lation distribution in two scans. From Figure 4.13 (a), while the global normalization

simply shifted the histogram along the horizontal axis, ETV and ELV normalization

leaded to narrower histogram centered around one. The distribution of gamma pass

rate in Figure 4.13 (b) further confirmed the improvement of reproducibility after the

normalization methods where ELV gave the best results for this subject, followed by

ETV, and then the global normalization.

The results of the experiment described in Figure 4.3 are shown in Figure 4.10

for subject H-8 and H-9 to show that the image selection in ETV is effective to im-

prove reproducibility. As the tidal volume difference reduces gradually, the mean
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of JACRATIO gets closer to one with reduced standard deviation. These results cor-

roborate the rationality for picking phases with matching tidal volume to enhance

reproducibility. Compared to the ELV method which sounds more related with the

definition of lung expansion, ETV is also worth researching into. For example, the

lung volume of scan two EE appears even greater than that of scan one EI for H-7

(refer to Figure 4.9 (a)), making ELV impossible. Compared to ELV which is based

on the relationship between the definition of lung expansion and lung volume ratios,

ETV is also meaningful because the reconstruction of the 0%IN phase is considered

to be the most temporally stable, as 0%IN is typically the phase at which the lung

spends relatively more time than the other phases during a typical respiration. There-

fore, it sounds reasonable for ETV to pick phases starting with the EE phase for both

baseline and followup scans.

The magnitude of effort difference varies for different subjects, and it is nec-

essary to investigate the relationship between the degree of effort difference and the

improvement of reproducibility after normalization. In Figure 4.14, more obvious

improvement in reproducibility was observed for subjects with greater tidal volume

difference. However, for some subjects with small tidal volume difference, e.g. less

than 100 cc, the ETV and ELV may result in worse reproducibility. Arbitrary effort

correction using ETV or ELV on the subjects with insignificant difference in lung

volumes or tidal volumes may introduce more ventilation variation and thus deteri-

orate the reproducibility, because the number of phases from which ETV and ELV

pick images are limited. In contrast, the global normalization uses a flexible float
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value which suggests global normalization may be useful in situations of small effort

difference. The drawbacks may be addressed by applying global normalization after

ETV or ELV to account for the small residual tidal volume differences. With more

subjects collected in the future study, it is essential to determine a cutoff tidal vol-

ume difference that below which we do not have to bother to do the normalization.

The same tidal volume may represent different scales of effort for different subjects

that may have various lung sizes. We have shown that the tidal volume difference is

correlated with the subject-specific proportional tidal volume difference. Therefore it

can be used a measure of the effort difference across different subjects.

All statistical parameters indicate the three effort correction methods improved

reproducibility, especially when changes in respiratory effort are bigger than 100 cc,

with great significance. From Table 4.2 we see for all subjects ELV gave better

results than ETV and global normalization. For cohort with tidal volume difference

over 100 cc, ELV is significantly better than global normalization (p = 0.003), while

no significance was found between ETV and global normalization (p = 0.084) or

between ETV and ELV (p = 0.156). Collecting more subjects in the future will help

investigate more for these normalization methods.

Only inspiration phases were used in this study. Compared to inspiration

which is driven by active respiratory muscles, the expiration depends upon elastic

recoiling force of lung tissue, frictional resistance of small airways, and the cross-

sectional areas of large airways [121]. The ventilation rate during expiration may be

more heterogeneous than in inspiration. Over the upper half of the vital capacity,
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the relationship between maximal expiratory flow and degree of inflation is effort-

dependent [122]. The peak air flow rate is in the upper half of the vital capacity

and more air is expired during the upper half of expiration [121, 122]. To avoid the

complexity, currently we exclude the intermediate expiration phases and use only

inspiration phases to correct for breath effort.

The phase-selection-based pulmonary function normalization strategies may

be influenced by reconstruction of 3D CT images at different levels in 4DCT, accu-

racy of lung segmentation, and lung volume change due to radiation-induced tumor

shrinkage etc. Investigation of more subjects will help analyze and compare these

normalization methods. The heterogeneity in lung expansion shows that effective

normalization schemes may require both a spatial and temporal component for res-

piratory effort correction. In the future ETV and ELV can be applied to the scans

before and after RT, or images with better matching lung volumes can be simply

reconstructed, to make the radiation-induced function change free of effort difference

and enable more significant analysis [114]. Moreover, the pulmonary function metrics

so far reflects lung ventilation only from one phase to another phase, and more robust

parameters for pulmonary function are worth being investigated to fully utilize the

4D nature of data, which may tell more information about the lung tissue dynamics.

4.5 Summary

In this chapter we presented two normalization strategies (ETV and ELV) to

correct for respiratory effort difference by selecting alternate respiratory phases from

4DCT, and compared them with global normalization. All normalization strate-
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gies improved reproducibility when changes in respiratory effort were great, and the

improvement of reproducibility is highly correlated with the changes in respiratory

effort. ELV gave better results than global normalization as effort difference increase.

Heterogeneity in lung expansion rates was quantified and analyzed, and the global

normalization is demonstrated to be inadequate to correct the ventilation map with

single scaling factor especially for subjects with great respiratory effort difference.

Collecting more subjects in the future will help better understand the normalization

strategies.
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CHAPTER 5

DISCUSSION

In this thesis, we analyze the regional pulmonary function using 4DCT and

image registration in the following topics: reproducibility of transformation-based

ventilation measurement, reproducibility of intensity-based ventilation measurement,

and normalization on the ventilation map for breath effort variation across scans.

Reproducibility of transformation-based ventilation

Lung function depends on lung expansion and contraction during the respira-

tory cycle. Respiratory-gated CT imaging and 3D image registration can be used to

locally estimate lung tissue expansion and contraction (regional lung volume change)

by computing the determinant of the Jacobian matrix of the image registration defor-

mation field. In Chapter 2, we examine the reproducibility of transformation-based

measures of lung tissue expansion in two repeat 4DCT acquisitions within a short time

interval of mechanically ventilated sheep and free breathing humans. The animal sub-

jects were anesthetized and mechanically ventilated, while the humans were awake and

spontaneously breathing based on respiratory pacing audio cues. From each 4DCT

data set, an image pair consisting of a volume reconstructed near end inspiration and

a volume reconstructed near end exhalation was selected. The end inspiration and

end exhalation images were registered using a tissue volume preserving deformable

registration algorithm and the Jacobian of the registration deformation field was used

to measure regional lung expansion. The Jacobian map from the baseline data set
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was compared to the Jacobian map from the followup data by measuring the voxel-

by-voxel Jacobian ratio. The reproducibility of the Jacobian values was found to

be strongly dependent on the reproducibility of the subject’s respiratory effort and

breathing pattern. Our results also show that good reproducibility can be obtained in

anesthetized, mechanically ventilated animals, but variations in respiratory effort and

breathing patterns reduce reproducibility in spontaneously-breathing humans. The

global linear normalization can globally compensate for breathing effort differences,

but a homogeneous scaling does not account for differences in regional lung expansion

rates.

Reproducibility of intensity-based ventilation

As an alternate method, CT imaging and image registration can be used to

estimate the regional lung volume change by observing CT voxel density changes

during inspiration or expiration. In Chapter 3, we examine the reproducibility of

intensity-based measures of lung tissue expansion and contraction in same sheep

and human subjects. The intensity-based measures are compared to the results of

the transformation-based method. The CT density change in the registered image

pair was used to compute intensity-based specific air volume change (SAC) and the

intensity-based Jacobian (IJAC), while the transformation-based Jacobian (TJAC)

was computed directly from the image registration deformation field. IJAC is in-

troduced to make the intensity-based and transformation-based methods compara-

ble since SAC and Jacobian may not measure the same physiological phenomenon

and have different units. A gamma index metric was introduced to measure voxel-



www.manaraa.com

145

by-voxel reproducibility considering both differences in ventilation and distance be-

tween matching voxels. We also tested how different CT pre-filtering levels affected

intensity-based ventilation reproducibility. Higher reproducibility was found for anes-

thetized mechanically-ventilated animals than for the humans for both the intensity-

based (IJAC) and transformation-based (TJAC) measures. The human IJAC maps

had scan-to-scan correlation coefficients of 0.45±0.14, a gamma pass rate 70±8 with-

out normalization and 75±5 with normalization. The human TJAC maps had cor-

relation coefficients 0.81±0.10, a gamma pass rate 86±11 without normalization and

93±4 with normalization. To summarize, the gamma pass rate and correlation co-

efficient of the IJAC maps gradually increased with increased smoothing, but were

still much lower than those of the TJAC maps. The transformation-based ventila-

tion maps show better reproducibility than the intensity-based maps, especially in

human subjects. Reproducibility was also found to depend on variations in respi-

ratory effort; all techniques were better when applied to images from mechanically

ventilated sheep compared to spontaneously-breathing human subjects. Nevertheless,

intensity-based techniques applied to mechanically ventilated sheep were less repro-

ducible than the transformation-based applied to spontaneously-breathing humans,

suggesting the method used to determine ventilation maps is important. Pre-filtering

of the CT images may help improve the reproducibility of the intensity-based ven-

tilation estimates, but even with filtering the reproducibility of the intensity-based

ventilation measurements are not as good as that of transformation-based ventilation

measurements.
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Respiratory Effort Correction

In Chapter 4, we present and compare normalization schemes that correct

ventilation images for variations in respiratory effort and assess the reproducibil-

ity improvement after effort correction. Repeat 4DCT image data acquired within a

short time interval from 24 patients prior to radiation therapy (RT) were used for this

analysis. Intra-scan change of pulmonary function was studied to demonstrate the de-

ficiency of global normalization. In addition to computing the ventilation maps from

end expiration to end inspiration, we investigated the effort normalization strategies

using other intermediated inspiration phases upon the principles of equivalent tidal

volume (ETV) and equivalent lung volume (ELV). Additional analysis was performed

to verify the effectiveness of ETV correction method. Scatter plots and the statistical

parameters of the repeat ventilation maps and the Jacobian ratio map were gener-

ated for 4 conditions: no effort correction, global normalization, ETV, and ELV. The

pattern of regional pulmonary ventilation changes as lung volume changes. All ef-

fort correction strategies improved reproducibility when changes in respiratory effort

were greater than 150 cc (p < 0.005 for the gamma pass rate). Improvement of re-

producibility was correlated with respiratory effort difference (R = 0.744 for ELV in

cohort with tidal volume difference greater than 100 cc). For tidal volume difference

between 20 and 130 cc’s, global normalization improved reproducibility when com-

pared to no effort correction (p = 0.026), and was statistically equivalent to ETV and

ELV when tidal volume difference was small. For the cohort with tidal volume dif-

ference greater than 100 cc, the average gamma pass rate improves from 63.1 before
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correction to 70.8 after global normalization, 72.9 after ETV, and 75.5 after ELV.

ELV was found to be significantly better than global normalization (p = 0.003). To

conclude, all normalization strategies improve the reproducibility of our pulmonary

ventilation measures, and the improvement of reproducibility is highly correlated with

the changes in respiratory effort. ELV gave better results than global normalization as

effort difference increase. However, based on the spatial and temporal heterogeneity

in the lung expansion rate, a single scaling factor (e.g., global normalization) appears

to be inadequate to correct the ventilation map when changes in respiratory effort

are large.

To our knowledge, this is the first effort to investigate the reproducibility of

registration-based ventilation measurement with repeat 4DCT before RT. Mathew et

al. [20] evaluated the reproducibility of 3-helium magnetic resonance imaging (MRI)

ventilation measurements by comparing the ventilation defect volume (VDV), and re-

ported reproducibility of VDV was higher at same-day rescan (R2 = 0.941) compared

to 7-day rescan (R2 = 0.576) in 8 healthy volunteers and 16 COPD subjects. How-

ever, VDV reproducibility throws away most of the spatial correlations, and we have

no sense for how the actual measurement values compare on a voxel-by-voxel level.

Nyeng et al. [92] studied local lung volume change in two thoracic 4DCT scans in five

patients, however, the two scans were different - one scan with respiration restricted

by an abdominal compression plate and the other under free breathing. To determine

the real underlying radiation-induced pulmonary function changes using 4DCT and

image registration, intra-subject variability needs to be established with voxel-by-
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voxel reproducibility study. In this thesis, we have investigated the reproducibility of

transformation-based (correlation coefficient 0.81±0.10) and intensity-based (correla-

tion coefficient 0.45±0.14) measures of lung tissue expansion in two repeat prior-RT

4DCT acquisitions. Similarly, Yamamoto et al. [86] investigated the reproducibility

of lung ventilation over two different time frames but reported moderate voxel-based

correlation between two ventilation images (Spearman rank correlation 0.50±0.15).

To our knowledge, this is also the first study to propose and summarize the

normalization strategies for respiratory effort difference across scans. Limitations ex-

ist in previous normalization methods, such as the percentile images used by Guerrero

et al. [47, 7, 14, 91], and the global normalization used by Zhang et al. [116], Seppen-

woolde et al. [115], and Vinogradskiy et al. [91]. The global normalization approach

is based on the assumption and/or approximation that the lung expansion rate is spa-

tially uniform. If the assumption is not true, the global normalization method will

arbitrarily overnormalize or undernormalize regional ventilation values. In this thesis,

we have demonstrated the spatial and temporal heterogeneity in the lung expansion

rate, and thus the limitations of global normalization. The two normalization strate-

gies proposed in this thesis, ETV and ELV, differ from other normalization methods

in that they select independent respiratory phases to compute pulmonary function,

rather than modify the computed ventilation values directly. ELV and ETV were

found to give better reproducibility than global normalization, especially for subjects

with greater respiratory effort difference.

4DCT has several advantages over SPECT and MRI as a tool to measure
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pulmonary function and radiation induced tissue toxicity. Quantifying overall un-

certainty in 4DCT-based ventilation measurement can help include subject repro-

ducibility when assessing pulmonary function change in longitudinal studies. The

normalization study on respiratory variations will also have important applications

when being used as either input information into the radiation therapy treatment

planning process, or for longitudinal study of pulmonary function.

There are some limitations of our technique. First, variability in the cycle-

to-cycle expansion of a spontaneously breathing lung may be one major factor that

influence the overall reproducibility of ventilation measurements, while slight vari-

ations in imaging protocol, patient position, reconstruction, and image processing

factors will also contribute to variability. However, we can not separate these factors,

but instead are measuring the total effect of all factors combined. Second, global nor-

malization appears sufficient for small variations in respiratory effort, but ETV and

ELV perform better when it comes to subjects with large respiratory effort difference.

The normalization problem may be better addressed by applying global normaliza-

tion after ETV or ELV to account for the small residual tidal volume differences.

Third, ventilation in this thesis is calculated between only a pair of 3D CT images.

More sophisticated ventilation technologies may utilize the full 4DCT scan to better

characterize the lung dynamics.
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CHAPTER 6

MAJOR CONTRIBUTIONS

The major contributions of this thesis include:

• Developed and validated a process for establishing measurement reproducibility

in 4DCT-based ventilation,

• Developed methods to assess reproducibility,

• Quantified reproducibility of transformation-based ventilation measurement,

• Quantified reproducibility of intensity-based ventilation measurement,

• Developed analytical models of how CT image noise affects the intensity-based

ventilation,

• Investigated the heterogeneity in lung expansion pattern and the limits of global

normalization,

• Developed and validated two normalization approaches taking advantage of the

4D nature of the data: ETV and ELV,

• Investigated the relationship between improvement of reproducibility and the

changes in respiratory effort.
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CHAPTER 7

FUTURE DIRECTIONS

In this chapter, we discuss some potential studies that will be interesting to

explore in future research on 4DCT-based pulmonary function analysis. The work

presented in this thesis can be extended and further explored with regard to both

methodologies and applications.

7.1 4D Image Registration

Currently the 4DCT images are not fully utilized. 4DCT are reconstructed

by sorting the CT data to corresponding phases from many respiratory cycles ac-

cording to the respiratory signal that is simultaneously recorded either internally or

externally [55]. It is important but also a great challenge to keep the calculated lung

motion consistent over time when analyzing the ventilation and tissue motion dynam-

ically in 4DCT. However, current approaches including the registration used in this

thesis usually register each phase image to a pre-defined phase image independently.

The similarity metric is defined without considering the temporal coherence in 4DCT.

Therefore, the derived displacement field is calculated between only two time points

and is subject to only the spatial correspondence of two 3D CT images.

A fully 4D image registration can register a set of 3D images simultaneously

taking into consideration both spatial and temporal smoothness of transformations.

It is of significance if we want to study the dynamic 4D properties of breathing motion

without losing the temporal coherence. Recently 4D image registration has eventually
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become a hot topic and many researchers have started investigating into it, such as

Castillo et al. [78], Metz et al. [79], Vandemeulebroucke et al. [80], Wu et al. [81, 82].

Based on the 4D registration, Jacobian versus time and regional hysteresis motion of

lung tissue can be analyzed.

Another significance of 4D image registration relates to the elimination of

motion artifacts. Even with the fast developing 4DCT scanners, only a segment of

human body can be scanned at each couch position. In the reconstruction process,

when the CT segments from multiple breathing cycles are sorted with regard to the

respiratory signal to assemble a full 4DCT scan, the CT segments may not be set to

the correct volume due to unavoidable patient free breathing, thus causing motion

artifacts including motion blur, vessel mismatch, slab misalignment, and irregular

tumor shape [81]. 4D image registration may provide a good solution for the artifacts

problem by ensuring spatial and temporal correspondence simultaneously.

7.2 Dynamic Measures of Pulmonary Function

In this thesis we use 3D approach to estimate regional pulmonary function

in which only the EE and EI volumes were used. However, most other phases in

the respiratory circle of 4DCT have not been analyzed. Reconstructed series of CT

images in 4DCT can be fully utilized to encode the ventilation and motion information

with high spatial resolution and moderate temporal resolution [55]. The complete

temporal measurements of ventilation and trajectory motion may be used to develop

new dynamic measures that may better estimate the lung function and may be more

robust to the noise and image artifacts.
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Figure 7.1. Non-linear nature of pulmonary biomechanics. Left figure represents
Jacobian of a specified ROI versus time for each scan; right figure shows the spatial
travel of the ROI for each respiratory phase (Scan 1 - blue circles, Scan 2 - red
squares).

Figure 7.1 shows the averaged dynamic ventilation and averaged displacement

trajectory for one ROI (size 11 mm × 11 mm × 11 mm, ventral lung) from repeated

4DCT scans. The dynamic Jacobian curves on the left plot describe regional lung

volume change versus time in the respiratory circle, and the trajectory hysteresis on

the right is useful to depict regional tissue motion with time. For this ROI, we can

see obvious variations of lung expansion and contraction in two repeat scans. We can

see the tissue achieves their maximum ventilation at 80%IN for scan1, which is not

available from the 3D analysis. The hysteresis study can be used to evaluate 4D image

registration algorithm described in Section 7.1. Additionally, the respiratory tissue

motion is closely related to the regional pulmonary ventilation and thus knowledge

of lung motion would be valuable as well [55]. Clinically, to avoid irradiating healthy

tissue during RT and to allow more dose targeted to the diseased region, accurate
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motion information is also important [123, 55].

The nonlinear nature of dynamic Jacobian inspires us to extract new param-

eters that are more physiologically meaningful and more tolerant to the variations in

breath effort, which is a crucial issue to consider for pulmonary function comparison

across 4DCT scans. Linear or nonlinear curve-fitting models are worth being investi-

gated to extract parameters that can better describe the lung dynamics. Evaluation

on the new models on subjects with great respiratory effort variation can be compared

to the results presented in this thesis.
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CHAPTER 8

CONCLUSION

Reproducibility of 4DCT-based ventilation measurements was presented, and

normalization strategies to compensate for respiratory effort variations were investi-

gated. The findings are novel and can help quantify statistically significant changes

in pulmonary function following RT.

Respiratory-gated 4DCT imaging and image registration can be used to esti-

mate the regional pulmonary function by a transformation-based ventilation metric

which is computed directly from the deformation field, or an intensity-based metric

which is based on CT density change in the registered image pair. In this thesis,

we have evaluated the reproducibility of regional pulmonary function measures us-

ing two repeat 4D image acquisitions taken within a short time interval for both

transformation-based (Chapter 2) and intensity-based (Chapter 3) metrics. The

transformation-based ventilation maps show better reproducibility than the intensity-

based maps, especially in human subjects. Reproducibility is found to depend on

changes in respiratory effort. Analytical model of intensity-based ventilation quanti-

fies the big impact of CT image noise. The effect of pre-filtering of the CT images is

found to be limited.

We have proposed and compared the normalization schemes that correct ven-

tilation images for variations in respiratory effort, and assessed the reproducibility

improvement after effort correction (Chapter 4). All normalization strategies im-
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prove the reproducibility of pulmonary ventilation measures, and the improvement

of reproducibility is highly correlated with the changes in respiratory effort. ELV

gave better results than global normalization as effort difference increase. Spatial

and temporal heterogeneity in the lung expansion rate demonstrates the deficiency

of global normalization.



www.manaraa.com

157

APPENDIX A

SUPPLEMENTAL REPRODUCIBILITY RESULTS

A.1 Reproducibility of transformation-based method

In this section, we will provide some supplemental results for Chapter 2, the

reproducibility study on transformation-based ventilation measurements.

Figure A.1 shows a 3D view of landmarks distribution in subject H-2 at scan1

100%IN. We could see the landmarks also form a uniform distribution in the superior-

inferior direction. Figure A.2 shows landmark distances before and after image regis-

tration in each of the three pairs for the same subject. The first two columns are for

registration between scan2 0%EX and scan1 0%EX (T0), the middle two columns for

registration between scan1 100%IN to scan1 0%EX (T1), and the last two columns

for registration between scan2 100%IN to scan2 0%EX (T2).

In addition to the results for subjects H-2, H-4, and H-8 that are presented

in Chapter 2, Figure A.3 and Figure A.4 show the Jacobian scatter plots and Bland-

Altman plots for more human subjects: H-1, H-7, H-9, H-10, H-11, H-12.

Guerrero et al. [47, 7, 14, 91] proposed converting ventilation images to per-

centile images to reduce the sensitivity to the maximum ventilation value on a par-

ticular image. The Jacobian percentile map is calculated based on the cumulative

distribution function (CDF) of the Jaocbian values distribution. The CDF of Jaco-

bian describes the probability that a ventilation value J will be found at a value less

than or equal to J . In this study, we also investigated the scatter plot of Jacobian

CDF, the results of which for 9 subjects are shown in Figure A.5 and Figure A.6.
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(a) (b)

Figure A.1. 3D views of the landmarks for subject H-2. The dark blue spheres
indicate the defined landmarks. (a) anterior-posterior and (b) right-left.
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Figure A.2. Box plot for landmark distances before and after registration for sub-
ject H-2 for the three registration pairs T0, T1, and T2. White box represents the
landmark distance before image registration, and gray box represents the landmark
distance after image registration.
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A.2 Reproducibility of intensity-based method

In this section, we will provide some supplemental results for Chapter 3, the

reproducibility study on intensity-based ventilation measurements.

Figure A.7 shows coronal and sagittal views of the original CT image, the SAC

map calculated from scan one and from scan two, and the gamma map for animal

S-1 (with distance-to-agreement (DTA) of 4 mm and ventilation difference criterion

of 5%). Non-pulmonary voxels that are outside the range [-999, -250] HU were not

processed. The SAC image from scan two (SACT2) is transformed through the T0

transformation to be converted into the coordinate system of scan one, producing T0◦

SACT2. The T0 transformation allows the two SAC images to be directly compared in

the same coordinate framework, and allows us to compute the voxel-by-voxel gamma

comparison γSAC.

Figures A.8 and A.9 show the coronal and sagittal views of the original CT

image, the SAC map calculated from scan one and from scan two, and the gamma

comparison map for human subjects H-4 and H-9. As with the animal subjects, the

scan two SAC image has been transformed into the coordinate system of scan one

using the T0 transformation. Subjects H-4 and H-9 were selected to illustrate cases

with good and poor reproducibility when comparing the scan one to scan two results.

As shown in Equation 3.3, the SAC maps are computed by using the intensity

information (HU) of registered CT images EE, EI and the displacement field from

image registration. Consequently the noise in the SAC maps and poor reproducibility

may derive from two sources, noise in original CT images and image registration error.
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Figure A.7. Coronal (top) and sagittal (bottom) views of (left to right) the original
CT, SACT1, T0 ◦ SACT2, and γSAC for animal subject S-1. Color scales are -0.2 to
0.6 for SACT1 and T0 ◦ SACT2, and 0 to 2 for γSAC.

Figure A.8. Transverse (top) and coronal (bottom) views of (left to right) the original
CT, SACT1, T0◦SACT2 and γSAC for human subject H-4. Color scales are -0.2 to 1.0
for SACT1 and T0 ◦ SACT2, and 0 to 2 for γSAC.
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Figures A.10 show the color maps after the highest level of filtering on original CT

images (neighborhood kernel size 15 mm × 15 mm × 15 mm). The color maps of

T0 ◦ SACT2 and γSACafter specific air volume normalization are shown in the third

column of Figure A.10. Correspondingly, Figure A.11 shows the change of the 2D

kernel density estimates for subject H-9 with different levels of filtering on CT images.

Figure A.12 and Figure A.13 show the SAC scatter plots for three animal

subjects and nine human subjects. Figure A.14 shows the SAC Bland-Altman plots

for one typical animal subject S-1 and three typical human subjects H-2, H-8, H-9.
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Figure A.9. Transverse (top) and coronal (bottom) views of (left to right) the original
CT, SACT1, T0◦SACT2 and γSAC for human subject H-9. Color scales are -0.2 to 0.8
for SACT1 and T0 ◦ SACT2, and 0 to 2 for γSAC.

Figure A.10. Transverse (top) and coronal (bottom) views of (left to right) SACT1,
T0 ◦ SACT2 and normalized T0 ◦ SACT2 for human subject H-9, after high level of
filtering on original CT images with local average kernel 15 × 15 × 15. Color scales
are -0.2 to 0.8 for all ventilation maps.
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Figure A.11. Smoothed color density scatter plot and marginal histograms of SACT1

and T0 ◦ SACT2 for one human subjects H-9 with different levels of filtering on the
original CT images. Ordered left to right and top to bottom, the local average kernel
sizes are 3 × 3 × 3, 7 × 7 × 7, 11 × 11 × 11, and 15 × 15 × 15. Histograms and
summary statistics for the SACT1 and SACT2 data are given along the top and right
side of each plot.
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Figure A.14. SAC Bland-Altman plots for one typical animal subject S-1 and three
typical human subjects H-2, H-8, H-9.
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APPENDIX B

SUPPLEMENTAL EFFORT CORRECTION RESULTS

B.1 Improvement of reproducibility

Figure B.1 shows the improvement of reproducibility which is characterized by

reduced MSE and increased gamma pass rate. It can observed that the improvement

of reproducibility is more significant for subjects with larger tidal volume difference

between scan one and two. We can also notice that if the tidal volume difference is

less than 150 cc, the effect of global normalization is close to ETV and ELV, and

ETV or ELV may deteriorate the reproducibility.

In addition to the MSE and gamma pass rate shown in Figure 4.14 in Chap-

ter 4, Figure B.2 shows the relationship between the tidal volume difference in two

scans and the change of reproducibility after global normalization, after ETV and/or

ELV, presented with two additional reproducibility parameters such as mean and

coefficient of variation (CV) of JACRATIO map. The horizontal axis is tidal volume

difference in liters. Mathematically the CV of JACRATIO does not change after global

normalization, therefore it is not shown in figure B.2 (b). The improvement of repro-

ducibility manifests itself in the ways of closeness of JACRATIO mean and one, and

reduced CV.

In addition to the gamma pass rate curves for subject H-8 shown in Figure 4.13

(b) in Chapter 4, Figure B.3 summarizes the averaged gamma pass rate curves for

before correction, after ETV correction, and after ELV correction, for all subjects

(shown in (a)) and the subjects that had tidal volume difference greater than 100 cc
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(shown in (b)). Additionally, Figure B.4, B.5, B.6 and B.7 list the gamma pass rate

curves for each subject.

Figure B.8 shows lobar tissue expansion pattern from EE to each respiratory

phase, for both scans of subject H-9. Average tissue expansion from EE to each

respiratory phase for each lobe and the whole lung is shown in (a) (for scan one) and

(c) (for scan two). Tissue expansion for lobes LU, LL, RU, RM, relative to lobe RL is

shown in (b) (for scan one) and (d) (for scan two). These results demonstrates that

the ventilation rate is not uniform throughout the lung, not even at the lobar level.

The ventilation rate for the left lower lobe is similar to the right lower lobe, but the

upper and middle lobes show more heterogeneous air filling rates.
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Figure B.2. Relationship between the tidal volume difference in two scans and the
change of reproducibility after global normalization, after ETV and/or ELV, presented
with two reproducibility parameters as mean and coefficient of variation (CV) of
JACRATIO map. The horizontal axis is tidal volume difference in liters. (a) Mean of
JACRATIO. (b) CV of JACRATIO.
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Figure B.3. Averaged gamma pass rate curves for before correction, after ETV cor-
rection, and after ELV correction. (a) For all subjects. (b) For the subjects that had
tidal volume difference greater than 100 cc.
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Figure B.8. Lobar tissue expansion pattern from EE to each respiratory phase. (a)
Scan one average tissue expansion from EE to each respiratory phase for each lobe
and the whole lung. (b) Scan one tissue expansion for lobes LU, LL, RU, RM, relative
to lobe RL. (c) Scan two average tissue expansion from EE to each respiratory phase
for each lobe and the whole lung. (d) Scan two tissue expansion for lobes LU, LL,
RU, RM, relative to lobe RL.
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APPENDIX C

DERIVATION OF INTENSITY-BASED VENTILATION

C.1 Alternate derivation of intensity-based Jacobian

First we are going to show the alternate derivation of Equation 3.6. From the

definition of SAC, we have,

SAC =
∆Vair

Vair,1

=
Vair,2 − Vair,1

Vair,1

=
Vair,2

Vair,1

− 1

=
V2f2
V1f1

− 1

If we define the volume ratio, VR, as

VR =
V2

V1

,

We can get the same result as Equation 3.6:

SAC + 1 =
f2
f1

VR

We can explore further about this. From Simon’s and Hoffman’s work [12, 107, 108],

if we assume that there is no tissue volume change between conditions 1 and 2, then

Vtissue = Vtissue,1 = Vtissue,2, we have

f1 =
HUtissue − HU1

HUtissue − HUair

f2 =
HUtissue − HU2

HUtissue − HUair
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then from Equation C.1, we have

SAC + 1 =
HUtissue − HU2

HUtissue − HU1

VR

If we assume the air is -1000 HU and the tissue is 0 HU, then

SAC + 1 =
HU2

HU1

VR

Secondly we will show the alternate derivation of Equation 3.9. If we assume

Vtissue = Vtissue,1 = Vtissue,2, then

VR =
V2

V1

=
Vtissue + Vair,2

Vtissue + Vair,1

=
1 +

Vair,2

Vtissue

1 +
Vair,1

Vtissue

=
1 +

V2(−HU2
1000

)

V2(1−(−HU2
1000

))

1 +
V1(−HU1

1000
)

V1(1−(−HU1
1000

))

=
1000 + HU1

1000 + HU2

,

which is exactly the same as Equation 3.9.
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APPENDIX D

ANALYTICAL ANALYSIS OF NOISE

D.1 Intensity-based SAC

The propagation of errors for the general function x = f(u, v), is given by the

relation [111]:

σ2
x = σ2

u

(
∂x

∂u

)2

+ σ2
v

(
∂x

∂v

)2

+ 2σ2
uv

(
∂x

∂u

)(
∂x

∂v

)
(D.1)

We can evaluate the propagation of CT image noise to the noise of intensity-

based SAC using Equation D.1. To simplify the analysis, we assume the transforma-

tion from the fixed image to the moving image is the identity transformation. Since

If and Im are measurements obtained from two separate acquisitions, they can be as-

sumed to be independent, and thus the covariance term in Equation D.1 is zero [111].

In fact, even if If and Im are not truly independent, the covariance terms are usually

one to two orders of magnitude smaller than the variance terms [111].

From Equation 3.3, if we let u = If , v = Im, and x = ∆V
Vf

, then we have:

x =
1000(v − u)

u(v + 1000)
,

and then,

∂x

∂u
=

−1000u(v + 1000)− 1000(v − u)(v + 1000)

(u(v + 1000))2

=
−1000v

u2(v + 1000)
,
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and,

∂x

∂v
=

1000u(v + 1000)− 1000(v − u)u

(u(v + 1000))2

=
1000(u+ 1000)

u(v + 1000)2
.

If we assume the CT noise variance in the fixed image and the moving image

to be the same, we have σ2
u = σ2

v = σ2
CT, and,

σ2
SAC = σ2

x = σ2
u

(
∂x

∂u

)2

+ σ2
v

(
∂x

∂v

)2

= σ2
CT

((
∂x

∂u

)2

+

(
∂x

∂v

)2
)

= σ2
CT

(
10002

u2(u+ 1000)2 + v2(v + 1000)2

u4(v + 1000)4

)
.

The impact of CT noise on the coefficient of variation (CV) of SAC is:

σx

µx

=
σCT

√
10002 u

2(u+1000)2+v2(v+1000)2

u4(v+1000)4

1000(v−u)
u(v+1000)

= σCT

√
u2(u+ 1000)2 + v2(v + 1000)2

u(v − u)(v + 1000)
.

D.2 Intensity-based Jacobian

Similar to the analytical analysis of noise in intensity-based SAC in Ap-

pendix D.1, we can use the same error propagation theory on intensity-based Ja-

cobian. Similarly, we assume the transformation from the fixed image to the moving

image is the identity transformation to ignore the covariance term in Equation D.1.

From Equation 3.9, if we let u = If , v = Im, and use IJAC as the intensity-based

Jacobian, then we have:

IJAC =
u+ 1000

v + 1000
,
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and then,

∂IJAC

∂u
=

1

v + 1000

and,

∂IJAC

∂v
=

(v + 1000)− (u+ 1000)

(v + 1000)2

=
v − u

(v + 1000)2
.

If we assume the CT noise variance in the fixed image and the moving image

to be the same, we have σ2
u = σ2

v = σ2
CT, and,

σ2
IJAC = σ2

u

(
∂IJAC

∂u

)2

+ σ2
v

(
∂IJAC

∂v

)2

= σ2
CT

((
∂IJAC

∂u

)2

+

(
∂IJAC

∂v

)2
)

= σ2
CT

(
(v + 1000)2 + (v − u)2

(v + 1000)4

)
.

The impact of CT noise on the coefficient of variation (CV) of IJAC is:

σIJAC

µIJAC

=
σCT

√
(v+1000)2+(v−u)2

(v+1000)4

u+1000
v+1000

= σCT

√
(v + 1000)2 + (v − u)2

(u+ 1000)(v + 1000)
.
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